В признании Кларк виновной было несколько проблем, но нас интересуют две[190]
,[191]. Во-первых, хотя образ жизни Кларк и состояние ее дома действительно говорили, что вероятность СВДС составляет 1 к 8453, отсюда не следует, что второй случай СВДС в этом доме столь же маловероятен. Нельзя просто возвести вероятность в квадрат. Если какой-то неизвестный фактор вызвал смерть в первом случае, то вполне вероятно, что этот же неизвестный фактор вызовет ее снова. Иными словами, вторая необъяснимая смерть становится гораздо более вероятной (по одной из оценок, ее риск возрастает до 1 к 60). Во-вторых, если объяснение невиновности обвиняемого крайне маловероятно, это не делает его виновность крайне вероятной. Стратегия использования сомнительной или вводящей в заблуждение статистики, которая, казалось бы, свидетельствует о высокой вероятности виновности, называется ошибкой обвинителя.Стоит отметить, что существует и ошибка подзащитного. Ее совершили в суде над О. Джеем Симпсоном: команда адвокатов апеллировала к тому факту, что менее 1 из 1000 человек, прибегающих к домашнему насилию над женщинами, в конце концов убивает их. Если вы сидите в составе коллегии присяжных, у вас возникает вопрос: неужели О. Джей Симпсон хуже, чем 1 из 1000? Но задаваться им не стоит, ведь он сбивает с толку и используется, чтобы вас отвлечь. Суть в том, что Николь Браун была убита, а нужная статистика такова: 4 из 5 избитых и убитых женщин погибают от руки партнера.
Даже убедительные с научной точки зрения доказательства, такие как пробы ДНК, могут вводить в заблуждение, если статистика представляется некорректно. Например, американской коллегии присяжных на суде об ограблении могут сказать, что вероятность совпадения ДНК подозреваемого и ДНК с места преступления – один на миллион. В результате присяжным может показаться, что дело не стоит и выеденного яйца. Но в США проживает 152 миллиона взрослых мужчин, а значит, помимо подозреваемого может найтись еще 151 человек, ДНК которого совпадет с ДНК преступника. Для вынесения обвинительного вердикта этих улик недостаточно.
Подобная проблема возникла при тестировании населения на COVID-19 в разгар недавней вирусной пандемии. В несовершенном мире нам кажется, что тест, дающий “99 % точности”, близок к совершенству, правда? Значит, нужно применять его ко всем, вне зависимости от того, есть ли у них какие-либо симптомы болезни, так? Если тест окажется положительным, люди вылечатся (при необходимости), а затем вернутся к своим делам, зная, что не заболеют снова, потому что у них сформировался иммунитет. Но такое субъективное решение может привести к ужасным последствиям.
Допустим, один человек из тысячи действительно болен COVID-19, и мы тестируем 1000 человек. На 99 % точный тест даст нам верный ответ при тестировании 99 % больных и 99 % здоровых. Следовательно, он выдаст положительный результат оставшемуся 1 % из 999 человек, которые не болеют коронавирусом. Это огромное число – 9,99 человека. Фактически 11 человек из 1000 получат положительные результаты, но только один из них действительно приобретет иммунитет. Это значит, что если ваш тест показал положительный результат, вы можете быть лишь на 10 % уверены в том, что у вас сформировался иммунитет. Не очень полезно, правда? И это если вы владеете
Такая нелогичность является одной из причин, по которым многие статистики предпочитают работать с другой системой. Она называется байесовской статистикой и появилась довольно давно. Преподобный Томас Байес вывел свою теорему в середине XVIII века. Точной даты мы не знаем, поскольку Байес никогда ни с кем не делился своими идеями.
Байесовская статистика, описанная в документах, обнаруженных после смерти преподобного в 1761 году, по-прежнему вызывает у статистиков споры. Никто не может однозначно сказать, лучше ли она, чем стандартная “частотная” статистика, которую мы разбирали ранее. Знакомая нам система называется частотной, поскольку в ее основе лежит поиск вероятности путем анализа частотности конкретного исхода. Так, если я буду снова и снова бросать правильную кость, в долгосрочной перспективе все числа будут выпадать с одинаковой частотой. Байесовская система, с другой стороны, изучает “условные вероятности”: каковы шансы
Допустим, вы присяжный и вам представили улику, которая на 70 % убедила вас, что я виновен в нападении. Но вас пока не ознакомили с данными судебной экспертизы. Из них вы узнаете, что на жертве найдена кровь такой же группы, что и у меня. Ага! Но постойте: такая группа крови у 35 % населения. Должно ли это повысить вашу уверенность в моей виновности? Или понизить? Или же эта информация не имеет значения?
Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии / Культурология