Читаем Искусство схемотехники. Том 1 (Изд.4-е) полностью

Если уровни А и В — оба высокие, то оба последовательно включенные n-канальные МОП-ключи Т1 и Т2 находятся в проводящем состоянии, жестко фиксируя на выходе потенциал земли; p-канальные ключи Т3 и Т4 оба разомкнуты, так что ток через них не течет. Однако если уровень на любом из входов А или В (или на обоих) низкий, то соответствующий

p-канальный МОП-транзистор открыт, подавая на выход высокий уровень, так как один (или оба) транзистор последовательной цепи Т1Т2 закрыт и ток через них не проходит.

Схема называется вентилем И-НЕ, поскольку она осуществляет логическую функцию И, но с инверсным (НЕ) выходом. Хотя вентили и их варианты — предмет рассмотрения гл. 8, вы можете доставить себе удовольствие, попытавшись набить руку на решении следующих проблем.

Упражнение 3.15. Нарисуйте КМОП-вентиль И. Подсказка: И = НЕ-И-НЕ.

Упражнение 3.16. Теперь нарисуйте схему вентиля ИЛИ-НЕ. На выходе этой схемы низкий уровень, если на любом из входов А или В (или на обоих) уровень высокий.

Упражнение 3.17.

Небольшая загадка — как будет выглядеть КМОП-вентиль ИЛИ?

Упражнение 3.18. Нарисуйте 3-входовый КМОП-вентиль И-НЕ.


Цифровые логические КМОП-схемы, которые мы будем рассматривать позже, строятся путем комбинирования этих базовых вентилей. Сочетание очень малой потребляемой мощности и жестко заданного выходного напряжения, привязанного к шинам питания, делает выбор семейства логических схем на КМОП-транзисторах предпочтительным для большинства цифровых схем, что и объясняет их популярность. Кроме того, для микромощных схем (таких как наручные часы и малые измерительные приборы с батарейным питанием) это вообще единственное решение. Однако, если мы не хотим впасть в заблуждение, стоит отметить, что мощность, потребляемая КМОП-логикой, хотя и очень мала, но не равна нулю.

Существуют два механизма, вызывающие появление тока стока. Во время переходных процессов через выход КМОП-схемы должен проходить кратковременный ток I = CdU/dt, чтобы зарядить имеющуюся на выходе емкость той или иной величины (рис. 3.60).



Рис. 3.60.Емкостной зарядный ток.


Емкость нагрузки образуется как за счет емкости проводников («паразитная» емкость), так и за счет входной емкости дополнительной логической схемы, подключенной к выходу. Фактически, поскольку сложный чип на комплементарных МОП-транзисторах содержит много вентилей, каждый из которых нагружен на некоторую внутреннюю емкость, в любой КМОП-схеме имеется некоторый ток стока, который участвует в переходных процессах, даже если сам чип не подключен ни к какой нагрузке. Неудивительно, что этот «динамический» ток стока пропорционален скорости, с которой происходит этот переходный процесс. Второй механизм появления тока стока в КМОП-схеме показан на рис. 3.61.



Рис. 3.61.

Проводимость в КМОП-схеме в режиме класса А.


При переходе напряжения на входе скачком от потенциала земли к уровню напряжения питания и обратно существует область, в которой оба МОП-транзистора находятся в состоянии проводимости, в результате чего возникает всплеск тока от UСС на землю. Его иногда называют «ток класса А» или «ломовой ток питания». Некоторые следствия, которые он вызывает, вы увидите в гл. 8, 9 и 14. Коль скоро мы сделали ставку на КМОП-схемы, нужно отметить и другой их недостаток (фактически, он присущ всем МОП-транзисторам) — это незащищенность от повреждения статическим электричеством. Дополнительно мы поговорим об этом в разд. 3.15.

Линейный усилитель на КМОП-транзисторах. КМОП-инверторы, как впрочем и все цифровые логические схемы, предназначены для работы с цифровыми логическими уровнями сигналов. Поэтому, за исключением времени переходных процессов, входы и выходы подключены к земле или к шине UСС (обычно +5 В). И опять-таки за исключением времени, которое длятся эти переходные процессы (типичная величина - несколько наносекунд), здесь нет тока стока в состоянии покоя. Оказывается, КМОП-инвертор обладает некоторыми интересными свойствами, когда он работает с аналоговыми сигналами. Взгляните снова на рис. 3.61.

Перейти на страницу:

Похожие книги

Космическая академия
Космическая академия

В книге освещена малоизвестная для широкого круга читателей область космонавтики, связанная с отбором, обучением, психологической, летной и инженерной подготовкой космонавтов. Отражены практически все направления сложившейся за последние 23 лет системы подготовки космонавтов. Книга даст ясное представление о том, как воспитываются и формируются профессиональные специалисты высокого класса. Последовательно раскрыты этапы становления личности космонавта, начиная с отбора кандидатов в космонавты, прохождения ими общекосмической подготовки с привлечением различных технических средств.Для широкого круга читателей.

Владимир Николаевич Григоренко , Георгий Тимофеевич Береговой , Дарья Александровна Проценко , Иван Николаевич Почкаев , Ростислав Борисович Богдашевский

Фантастика / Любовное фэнтези, любовно-фантастические романы / Астрономия и Космос / Техника / Транспорт и авиация / Боевая фантастика / Космическая фантастика / Прочая научная литература / Образование и наука