Читаем Искусство схемотехники. Том 1 (Изд.4-е) полностью

Две оставшиеся схемы демонстрируют два способа обработки сигнала +2,4 В (в худшем случае; обычно это где-то около +3,5 В) — высокого логического уровня цифровой логики ТТЛ. Можно использовать «подтягивающий» к +5 В резистор, чтобы обеспечить полный перепад +5 В на выходе ТТЛ, который затем возбуждает обычный МОП-транзистор; можно выбрать и другой путь — использовать что-нибудь вроде ΤΝ0106-«низкопорогового» МОП-транзистора, рассчитанного на сигнал возбуждения с уровнем ТТЛ. Будьте, однако, внимательны к паспортным данным. Например, в спецификации на TN01 указано «UЗИ пор = 1,5 В (макс.)», что звучит прекрасно до тех пор, пока вы не прочтете превосходную сноску («при IС = 1 мА»). Это означает, что для полного открытия МОП-транзистора на затвор нужно подать напряжение намного выше UЗИ пор  (Рис. 3.68). Однако эта схема, возможно, будет работать хорошо, поскольку а) высокий уровень выхода ТТЛ редко бывает ниже +3 В и типичное его значение составляет +3,5 В и б) в паспорте на ΤΝ01 далее указано: «Uвкл (тип.) = 5 Ом при UЗИ = 3 В».



Рис. 3.68. Стоковые характеристики n-канального МОП-транзистора типа TN0104 с низким пороговым напряжением, a — выходные характеристики; б — передаточные характеристики.


Этот пример иллюстрирует часто возникающие у разработчика затруднения, а именно — что выбрать: сложную схему, полностью удовлетворяющую критериям разработки в наихудшем случае и тем самым гарантирующую работоспособность, или простую схему, не отвечающую спецификациям в наихудшем случае, которая, однако, в подавляющем большинстве случаев будет работать без проблем. Не раз еще возникнут моменты, когда вы поймаете себя на том, что выбираете последнее, не обращая внимания на слабый внутренний голос, подсказывающий обратное.

Емкость. В предыдущем примере мы включали последовательно с затвором резистор (в схеме с индуктивной нагрузкой). Как отмечалось ранее (разд. 3.09), МОП-транзисторы имеют практически бесконечное резистивное сопротивление затвора, но конечное полное сопротивление из-за емкости затвор-канал. У сильноточных МОП-транзисторов эта емкость может быть очень разной: сравните входную емкость 45 пФ у 1-амперного VN01 с Свх

= 450 пФ 10-амперного IRF520; 70-амперный SMM70N05 фирмы Siliconix имеет Свх = 4300 пФ! Быстро изменяющееся напряжение стока может вызвать в затворе переходный ток в миллиамперах, что достаточно для перегрузки (и даже для повреждения) нежных управляющих КМОП-чипов.

Последовательно включаемое сопротивление выбирается из соображений компромисса между быстродействием и необходимостью защиты, при этом типичными являются значения от 100 Ом до 10 кОм. Даже без индуктивной нагрузки динамический ток затвора будет, конечно, иметь место: емкость относительно земли Ciss будет заряжаться током I = CissdUЗИ/dt, а (меньшая) емкость обратной связи Crssсоздает входной ток

I = CrssdU/
dt. Этот последний будет доминировать в ключе с общим истоком, поскольку ΔU обычно намного больше, чем сигнал возбуждения затвора ΔUЗИ (эффект Миллера).

Упражнение 3.19. МОП-транзистор IRF520, переключающий 2-амперную нагрузку, выключается за 100 нс (при переключении потенциала затвора с +10 В до потенциала земли), в течение которых напряжение стока изменяется от 0 до 50 В. Чему равно среднее значение тока затвора в течение этих 100 нс в предположении, что Сзи (называемое такжеC

iss) равно 450 пФ, а Ссз (называемое также Crss) равно 50 пФ?


В ключе с общим истоком вклад эффекта Миллера в ток затвора имеет место все время, пока не завершится переходный процесс в цепи стока, а емкость затвор-исток создает ток только при изменении напряжения затвора. Эти эффекты часто рисуются в виде графика «зависимости заряда затвора от напряжения затвор-исток», как это сделано на рис. 3.69.



Рис. 3.69.Зависимость заряда затвора МОП-транзистора типа IRF520 от UЗИ.


Перейти на страницу:

Похожие книги

Космическая академия
Космическая академия

В книге освещена малоизвестная для широкого круга читателей область космонавтики, связанная с отбором, обучением, психологической, летной и инженерной подготовкой космонавтов. Отражены практически все направления сложившейся за последние 23 лет системы подготовки космонавтов. Книга даст ясное представление о том, как воспитываются и формируются профессиональные специалисты высокого класса. Последовательно раскрыты этапы становления личности космонавта, начиная с отбора кандидатов в космонавты, прохождения ими общекосмической подготовки с привлечением различных технических средств.Для широкого круга читателей.

Владимир Николаевич Григоренко , Георгий Тимофеевич Береговой , Дарья Александровна Проценко , Иван Николаевич Почкаев , Ростислав Борисович Богдашевский

Фантастика / Любовное фэнтези, любовно-фантастические романы / Астрономия и Космос / Техника / Транспорт и авиация / Боевая фантастика / Космическая фантастика / Прочая научная литература / Образование и наука