Сравнение сильноточных ключей на МОП-транзисторах и биполярных транзисторах.
Мощные МОП-транзисторы в большинстве случаев являются хорошей заменой мощным биполярным транзисторам. Сегодня они при тех же параметрах стоят несколько больше, однако они проще в управлении и не подвержены вторичному пробою, ограничивающему область безопасной работы (см. рис. 3.66).Помните, что МОП-транзистор во включенном состоянии ведет себя как малое сопротивление (а не как насыщенный биполярный транзистор). Это может оказаться выгодным, так как «напряжение насыщения» явным образом стремится к нулю при малых токах стока. Существует общее представление о том, что МОП-транзисторы не насыщаются так же при больших токах, однако наши исследования показали, что это представление глубоко ошибочно. В табл. 3.6 мы выбрали несколько сравнимых пар (биполярный p-n
-транзистор и n-канальный МОП-транзистор) и выписали для них паспортные данные по UКЭ нас или RСИ вкл.
Слаботочный МОП-транзистор выглядит слабо в сравнении со своим биполярным собратом, однако в диапазоне 10–50 А, 0-100 В МОП-транзистор работает лучше. Обратите особое внимание на исключительно высокий ток базы, необходимый для того, чтобы биполярный транзистор вошел в глубокое насыщение — 10 % и более от величины коллекторного тока (!) — в сравнении с 10 В смещения (ток нулевой), при которых обычно специфицируются данные на МОП-транзистор. Отметим также, что высоковольтные МОП-транзисторы (например, с UСИ проб
> 200 В) имеют как правило большее RСИ вкл и более высокие значения температурных коэффициентов, чем низковольтные устройства. Наряду с параметрами насыщения в таблице приведены значения емкостей, так как их величина у мощных МОП-транзисторов часто больше, чем у биполярных транзисторов с такой же токовой нагрузочной способностью; для некоторых схемных применений (особенно там, где важна скорость переключения) можно рассматривать произведение емкости на напряжение насыщения как показатель качества применяемого транзистора.Запомните: мощные МОП-транзисторы можно использовать в качестве замены биполярных транзисторов в мощных линейных схемах, например в усилителях звуковой частоты и стабилизаторах напряжения (о последних мы будем говорить в гл. 6
). Мощные МОП-транзисторы выпускаются также в виде p-канальных приборов, хотя среди n-канальных приборов их разновидностей гораздо больше.Некоторые примеры мощных переключательных схем на МОП-транзисторах.
На рис. 3.72 показаны три разных способа использования МОП-транзистора для управления мощностью постоянного тока, которая направляется в некоторую подсхему и подачу которой нам хотелось бы включать и выключать. Если мы имеем измерительный прибор с батарейным питанием, и измерения с его помощью производятся от случая к случаю, тогда можно применить схему а, которая отключает потребляющий значительную мощность микропроцессор на все время, пока измерения не проводятся. Здесь мы применили p-канальный МОП-ключ, переключаемый 5-вольтовым логическим сигналом. Эта «5-вольтовая логика» представляет собой цифровые КМОП-схемы, которые находятся в рабочем состоянии даже тогда, когда микропроцессор отключен (напомним: КМОП-логика имеет статическую мощность рассеяния, равную нулю). В гл. 14 мы предлагаем гораздо подробнее рассказать о такого рода схеме «отключения питания».
Вторая схема (рис. 3.72, б
) переключает подачу в нагрузку питания +12 В при значительном токе нагрузки; это может быть радиопередатчик или что-то подобное. Поскольку у нас есть лишь 5-вольтовый диапазон логического сигнала, то для создания «полномасштабного» сигнала амплитудой 12 В, который будет управлять p-канальным МОП-вентилем, мы использовали слаботочный n-канальный ключ. Обратите внимание на высокое сопротивление резистора в цепи стока n-канального МОП-транзистора, что здесь совершенно оправдано, так как ток в цепи затвора p-канального МОП-вентиля не течет (даже при полном токе через ключ 10 А) и нам не требуется высокая скорость переключения в такого рода применениях.
Третья схема в
) является развитием схемы б) и содержит схему на p-n-p-транзисторе, ограничивающую ток короткого замыкания. Применять такую защиту в схемах с большой потребляемой мощностью всегда полезно, поскольку короткое замыкание такого рода весьма вероятно, особенно при макетных испытаниях. В этом случае схема ограничения тока предотвращает также возникающий на короткий момент при подаче +12 В в нагрузку резкий всплеск тока короткого замыкания через первоначально незаряженный конденсатор. Попытайтесь понять, как работает эта схема ограничения тока.
Рис. 3.72.
Мощные схемы переключения цепей постоянного тока на МОП-транзисторах.