Читаем История химии с древнейших времен до конца XX века. В 2 т. Т. 2 полностью

Согласно этому уравнению, сумма статического давления Р, давления, обусловленного весом столба жидкости или газа ρgh, и динамического давления ρv2/2 остается постоянной вдоль линии потока.

Еще одним сторонником кинетической теории теплоты в те времена был великий русский ученый М.В. Ломоносов (см. т. 2, глава 1, пп. 1.4.4–1.4.6). Он применил молекулярно-кинетические представления, составляющие важную часть его «корпускулярной философии», для объяснения различных тепловых процессов.

Следует подчеркнуть, что гипотеза Бернулли практически полностью совпадает с современными представлениями о теплоте. При этом уместно напомнить, что в то время весьма популярными были и другие теории. В частности, считали, что теплота — это локализованные колебания эфира или вихревые движения в нем, т. е. тоже движение, но не самих частиц, а среды, в которую они погружены. Согласно другой версии, которую разделял, например, Дж. Дальтон (см. т. 1, глава 8, п. 8.4), каждая частица вещества окружена «тепловым экраном или облаком», благодаря чему частицы отталкиваются друг от друга, что и объясняет наличие давления. Великий французский химик А.Л. Лавуазье рассматривал «теплород» как один из безусловных химических элементов (см. т. 1, глава 6, п. 6.7.3).

Помимо того, что в XVIII столетии среди естествоиспытателей не существовало единого мнения о природе теплоты, — далеко не все ученые понимали и различие между количеством теплоты и степенью нагрева тел, т. е. температурой. Большинство из них склонялось к мнению, что

температура определяется количеством теплоты в теле: чем больше теплоты — тем выше температура. 

3.2.2. Рождение терминов

C латыни слово «temperature» переводится как: а) надлежащее смешение, правильное соотношение, соразмерность или б) правильное устройство, нормальное состояние. Первоначально этот термин использовали в медицине, обозначая надлежащую композицию лекарственных препаратов для возвращения организма в нормальное состояние. Применительно к тепловым явлениям его стали использовать лишь в середине XVIII в. До этой поры применяли термин «color», которым обозначали и теплоту, и температуру, тем более, что особой разницы между этими понятиями не ощущали.

Иногда показания термометра называли другим словом — «temperies» — и полагали, что этот прибор позволяет измерять количество теплоты в том или ином теле. Немецкий физик Даниель Габриель Фаренгейт

, сконструировавший самый точный в свое время термометр (см. т. 2, глава 3, п. 3.2.3), изучал процесс смешивания холодной и горячей воды. Он установил, что если смешивать их в одинаковых объемах, то температура смеси будет равна среднему арифметическому температур холодной и горячей воды. Но для обозначения температуры Фаренгейт, по-прежнему, использовал термин
«color».

Георг Вильгельм Рихман (1711–1753) 

В конце 40-х — начале 50-х гг. XVIII столетия слово «температура» в связи с показаниями термометра стал использовать российский физик Георг Вильгельм Рихман. Он предполагал, что должны существовать две меры теплоты. Одна из них, характеризующая «градус теплоты», должна служить мерой степени нагрева тела. Другая же предназначена для определения количества теплоты, содержащейся в теле при данной степени нагрева{321}. Опытным путем Рихман вывел формулу для распределения теплоты в смеси однородных жидкостей:

Qсм = (am + bn +
co + dp + … )/(а + b + с + а + …), (3.2)

где m, n, о, p, … — теплоты масс a,

b, с, d, … От формулы (3.2) был всего один шаг до введения понятия теплоемкости, вносящего ясность во взаимоотношения между теплотой и температурой. 

3.2.3. История термометра

Как свидетельствуют сохранившиеся документы, первые приборы для измерения температуры — термометры (а точнее, термоскопы) стал изготавливать Г. Галилей (см. т. 1, глава 6, п. 6.1) в конце 90-х гг. XVI столетия. Эти приспособления представляли собой стеклянный шар А, наполненный воздухом, из нижней части которого отходила частично заполненная водой трубка. Эта трубка заканчивалась в сосуде D, также наполненном водой. Когда воздух в сосуде расширялся, например, от тепла руки, уровень воды в сосуде поднимался. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, высота водяного столбика зависела не только от температуры, но и от атмосферного давления. Поэтому в действительности термометр Галилея измерял нечто неопределенное и позволял лишь сравнивать температуру разных тел в одно и то же время и в одном и том же месте.

Схема термоскопического опыта Г. Галилея 

Перейти на страницу:

Все книги серии История химии с древнейших времен до конца XX века

История химии с древнейших времен до конца XX века. В 2 т. Т. 1
История химии с древнейших времен до конца XX века. В 2 т. Т. 1

В учебном пособии в углубленном изложении представлены основные темы учебного лекционного курса «История и методология химии». Авторы рассматривают эволюцию химических знаний с древнейших времен до наших дней.Особое внимание в книге уделено анализу развития и становления фундаментальных концепций химической теории; детально прослеживается сложный и длительный переход от античного атомизма к современным учениям о строении вещества.Первый том пособия посвящен важнейшим событиям в истории химии классического периода. В нем рассмотрен вклад крупнейших ученых и философов в процесс формирования основных научных понятий и теоретических представлений с древности до 60-х гг. XIX столетия.Издание содержит большое количество иллюстраций, способствующих более наглядной реконструкции описываемых событий, а также краткие биографии наиболее видных ученых-химиков и мыслителей древности.Для преподавателей, студентов и аспирантов химических факультетов классических университетов, а также широкого круга читателей, интересующихся проблемами истории химии.

Александр Михайлович Самойлов , Ирина Яковлевна Миттова

Справочная литература
История химии с древнейших времен до конца XX века. В 2 т. Т. 2
История химии с древнейших времен до конца XX века. В 2 т. Т. 2

В учебном пособии в углубленном изложении представлены основные темы лекционного курса «История и методология химии». Авторы рассматривают эволюцию химических знаний с древнейших времен до наших дней.Второй том пособия посвящен анализу наиболее значимых открытий и инноваций в области теоретической и прикладной химии, которыми столь богат современный период ее истории. В создании исторической картины становления важнейших дисциплин: физической химии и аналитической химии, а также фундаментальных концепций  —  учения о сложном строении атома и теории химической связи — использован преимущественно логический подход. Одной из центральных тем второго тома является анализ истории открытия Периодического закона Д.И. Менделеева. Авторы сочли необходимым представить развернутую картину становления химии в России, обозначив при этом ту особую роль, которую сыграл М.В. Ломоносов в эволюции отечественной науки и образования.Издание содержит большое количество иллюстраций, способствующих более наглядной реконструкции описываемых событий, а также краткие биографические данные наиболее видных ученых-химиков.Для преподавателей, студентов и аспирантов химических факультетов классических университетов, а также для широкого круга читателей, интересующихся проблемами истории химии.

Александр Михайлович Самойлов , Ирина Яковлевна Миттова

Справочная литература

Похожие книги

Информация как основа жизни
Информация как основа жизни

КОРОГОДИН В. И., КОРОГОДИНА В. Л.ИНФОРМАЦИЯ КАК ОСНОВА ЖИЗНИ© Авторы. В. И. Корогодин и В. Л. Корогодина, 2000 г. © Оформление. ИЦ "Феникс", 2000 г.Книга посвящена феномену жизни и информации как внутренне присущему свойству информационных систем.Рассматриваются свойства информации и информационных систем. Выделяются главные свойства информационных систем – способность к "целенаправленным" действиям и расслоение на информационную" и "динамическую" подсистемы.Рассматривается динамика информации от ранних этапов эволюции физических информационных систем до систем с биологической информацией – генетической, поведенческой и логической. Особое внимание уделяется динамике биологической информации в биосфере. Одной из проблем, затрагиваемой авторами, является взаимодействие ноосферы и техносферы, связанной с автогенезом информации.Книга рассчитана на специалистов, а также на круг читателей, интересующихся теорией информации, эволюцией, биологией и взаимоотношениями биосферы и техносферы.KOROGODIN V. I. & KOROGODINA V. L.Information as the Foundation of Life. – Dubna: "Phoenix" Publishing Center, 2000. – 208 p.The book analyzes the phenomenon of life and information as an inherent quality of information systems.Properties of information and information systems are discussed. The main properties of information systems are pointed out: the ability to act "purposefully" and the division into an "informative" and "dynamic" subsystems.The dynamics of information is analyzed, from the early stages of physical information system evolution to the systems with biological genetic, be-haviouristic and logical information. Special attention is attached to the dynamics of biological information in biosphere. One of the problems, connected with information autogenesis and discussed by the authors, is the interaction of noosphere and technosphere with biosphere.The book is recommended to specialists and readers who are interested in the theory of information, evolution, biology and interaction of biosphere and technosphere.

В. И. Корогодин , Владимир Иванович Корогодин , В Л Корогодина , В. Л. Корогодина

Справочная литература / Прочая справочная литература / Словари и Энциклопедии