Сохранилось много интересных рассказов (вероятно, вымышленных) о том, какими практическими проблемами стимулировались математические исследования. Самый ранний и простой рассказ связан с Фалесом, которого, когда он был в Египте, царь попросил вычислить высоту пирамиды. Фалес выждал такое время дня, когда его тень по величине сравнялась с его ростом, затем он измерил тень пирамиды, которая, конечно, также была равна ее высоте. Говорят, что законы перспективы впервые были изучены геометром Агафархом, для того чтобы написать декорации к пьесам Эсхила. Задача определить расстояние до корабля, находящегося в море, которую, как говорят, изучал Фалес, была правильно решена уже в очень отдаленные времена. Одной из важных задач, которая занимала греческих геометров, было удвоение кубического объема. Она возникла, как говорят, у жрецов одного храма, которым оракул возвестил, что бог хочет иметь свою статую вдвое большего размера, чем та, которая у них была. Сначала они решили попросту удвоить все размеры статуи, но затем поняли, что новая статуя получится в восемь раз больше подлинника, а это повлечет за собой большие расходы, чем того требовал бог. Тогда они послали делегацию к Платону с просьбой, не может ли кто-нибудь из Академии решить их проблему. Геометры занялись ею и проработали над ней целые столетия, дав попутно множество прекрасных произведений. Задача эта, конечно, сводится к извлечению кубического корня из 2.
Квадратный корень из 2 – первое из открытых иррациональных чисел – был известен ранним пифагорейцам, и были изобретены остроумные методы приближения к его значению. Наилучшими были следующие: образуйте два столбца чисел, которые мы будем называть
Пифагора, личность которого всегда оставалась довольно туманной, Прокл назвал первым, кто сделал геометрию частью общего образования. Многие авторитеты, включая Томаса Хизса[168]
, полагают, что Пифагор, быть может, действительно открыл теорему, носящую его имя; согласно ей, в прямоугольном треугольнике квадрат стороны, лежащей против прямого угла, равен сумме квадратов двух других сторон. Во всяком случае, эта теорема была известна пифагорейцам очень давно. Они знали также, что сумма углов треугольника составляет два прямых угла.Иррациональные числа, кроме корня квадратного из 2, изучались в отдельных случаях Феодором, современником Сократа, и в более общем виде Теэтетом, который жил примерно во времена Платона или, может быть, несколько раньше. Демокрит написал трактат об иррациональных числах, но о содержании этого трактата известно очень немногое. Платон глубоко интересовался этой проблемой; он упоминает о трудах Феодора и Теэтета в диалоге, названном в честь последнего. В «Законах» он говорит, что общее невежество в этой области постыдно, и намекает, что сам узнал об этом в довольно позднем возрасте. Открытие иррациональных чисел, безусловно, имело большое значение для пифагорейской философии.
Одним из самых важных следствий открытия иррациональных чисел было создание Евдоксом геометрической теории пропорции (408–355 годы до н. э.). До него существовала лишь арифметическая теория пропорции. Согласно этой теории, отношение