Евдокс также изобрел или усовершенствовал «метод исчерпывания», который затем с большим успехом был использован Архимедом. Этот метод является предвосхищением интегрального исчисления. Взять, например, вопрос о площади круга. Вы можете вписать в круг правильный шестиугольник или правильный двенадцатиугольник, или правильный многоугольник с тысячью или миллионом сторон. Площадь такого многоугольника, сколько бы у него ни было сторон, пропорциональна квадрату диаметра круга. Чем больше сторон имеет многоугольник, тем больше он приближается к кругу. Можно доказать, что если многоугольник обладает достаточно большим количеством сторон, то разность между его площадью и площадью круга будет меньше любой наперед заданной величины, как бы мала она ни была. Для этой цели используется аксиома Архимеда. Она гласит (если ее несколько упростить), что если бо́льшую из двух величин разделить пополам, а затем половину снова разделить пополам и так далее, то после конечного числа шагов будет достигнута величина, которая окажется меньше, чем меньшая из двух первоначальных величин. Другими словами, если
Метод исчерпывания ведет иногда к точному результату, например, при решении задачи о квадратуре параболы, которая была решена Архимедом; иногда же, как при попытке вычислить квадратуру круга, он может вести лишь к последовательным приближениям. Проблема квадратуры круга – это проблема определения отношения длины окружности к диаметру круга, называемого
Евклид, труды которого в дни моей молодости все еще оставались единственным признанным учебником геометрии для школьников, жил в Александрии около 300 года до н. э., спустя некоторое время после смерти Александра Македонского и Аристотеля. Большая часть его «Начал» не являлась оригинальным произведением, но порядок в последовательности теорем и логическая структура были в основном его собственными. Чем больше изучаешь геометрию, тем восхитительнее они кажутся. Интерпретация параллельных посредством знаменитого постулата о параллельных имеет двойное достоинство: дедукция здесь строга, и в то же время не скрыта сомнительность исходного предположения. Теория пропорции (тройное правило), которой следует Евдокс, обходит все трудности, связанные с иррациональными числами, при помощи методов, по существу, схожих с теми, которые были введены в математический анализ Вейерштрассом в XIX столетии. Затем Евклид переходит к своего рода геометрической алгебре и трактует в книге X иррациональные числа. После этого он переходит к рассмотрению пространственной геометрии, заканчивая построением правильных многогранников, которое было усовершенствовано Теэтетом и принято в «Тимее» Платона.
«Начала» Евклида являются, безусловно, одной из величайших книг, которые были когда-либо написаны, и одним из самых совершенных памятников древнегреческого интеллекта. Конечно, книга эта носит и черты типически греческой ограниченности: метод в ней чисто дедуктивный и не содержит в себе способа проверки исходных предположений. Эти предположения считались неоспоримыми, но в XIX веке неевклидова геометрия показала, что отчасти они
Евклид презирал практическую полезность, которую внедрял Платон. Говорят, что один ученик, прослушав доказательства, спросил, что выиграет он изучением геометрии; тогда Евклид позвал раба и сказал: «Дай молодому человеку грош, поскольку он непременно должен извлекать выгоду из того, что изучает». Однако презрение к практике было прагматически оправдано. Никто не предполагал во времена греков, что изучение конических сечений принесет какую-либо пользу: но наконец в XVII веке Галилей открыл, что снаряды двигаются по параболе, а Кеплер – что планеты двигаются по эллипсам. Неожиданно та работа, которую греки проделали из чистой любви к теории, стала ключом к ведению войны и к развитию астрономии.