Читаем Юный техник, 2002 № 05 полностью

Вспомним, амплитуда колебаний соответствует громкости звука, а частота — высоте тона. Посмотрите при случае осциллограмму музыки. Довольно красивое чередование извилистых линий. Все это бесконечно развивающийся график зависимости напряжения от времени. Приглядевшись, можно усмотреть в них и дух музыкального произведения. Некоторые звуки, например, свист, чистая музыкальная нота, дают колебания, близкие к синусоидальным. Большинство же звуков дают колебания, более сложные по очертанию. Но их можно представить в виде суммы простых синусоид разных частот. (Не только осциллограмму звука, но и вообще любую линию можно разложить на отдельные синусоиды. Из них же ее можно составить вновь.) Зная набор частотных составляющих, говорят о спектре колебания.

Спектр нашего голоса содержит частоты примерно от 300 Гц до 3…4 кГц. Для хорошего воспроизведения музыки нужен спектр частот от 50 Гц до 10…12 кГц.

Вообще же человеческое ухо способно слышать в диапазоне от 16 Гц до 16 кГц, и чем ближе к этим значениям границы полосы частот всего тракта передачи, тем естественнее звучание.

Радиовещательные станции в диапазонах ДВ — КВ работают методом амплитудной модуляции. Посмотрим, что при этом происходит.

Возьмем генератор, стабилизированный кварцем. Ни одна сила в мире, в том числе изменение напряжения питания, не способна изменить его частоту более чем на 0,001 %. Подадим напряжение на усилитель. А усилитель будем питать постоянным напряжением, на которое наложено напряжение чистого тона звуковой частоты (рис. 1).



Тогда амплитуда высокочастотного напряжения будет меняться в такт с ним.

На экране осциллографа мы увидим, что на амплитуду высокочастотных колебаний генератора наложена и как бы огибает ее звуковая частота. Но генератор продолжает работать на своей прежней частоте. А то, что мы видели на экране осциллографа, не что иное, как графический результат действия синусоидального напряжения генератора на синусоидальное напряжение звуковой частоты.

Из тригонометрии нам известно, что произведение синусов двух разных аргументов раскладывается на сумму двух синусов: синуса суммы двух аргументов и синуса разности двух аргументов. Поэтому в дополнение к частоте генератора возникают две новые частоты.

Одна из них равна сумме звуковой частоты и частоты генератора, а другая их разности. Спектральная диаграмма сигнала, получаемого в этом случае, показана на рисунке 2.



Слева на ней в виде вертикальной линии показана звуковая частота F, в середине — так называемая несущая частота f. Это неизменная по амплитуде частота генератора. Сама несущая информации не несет, но на ее создание расходуется 90 % энергии передатчика. Отметим сей факт и поговорим о нем в следующий раз. По бокам от несущей еще две частоты: суммарная f + F и разностная

f — F. Их так и называют: боковые частоты, верхняя и нижняя. При отсутствии модуляции боковых частот нет.

Что же получится, если модулировать несущую не чистым тоном, а целым спектром звуковых частот речи или музыки?

Каждая компонента звукового спектра образует свою пару боковых частот. Образуется сложный спектр модулированного сигнала, содержащий несущую, верхнюю и нижнюю боковые полосы, как показано на рисунке 3.



Верхняя боковая полоса в точности соответствует спектру звуковых частот, но смещена по частоте вверх на величину несущей.

Нижняя боковая полоса так же точно отображает спектр звуковых частот, но по порядку их расположения является зеркальным отражением верхней.

Когда говорят, что радиостанция работает на такой-то частоте, например «Маяк» — 198 кГц, то это частота ее несущей. Сигнал радиостанции занимает не только одну эту частоту, но и некоторую полосу частот вокруг. По нашим стандартам при радиовещании в диапазоне ДВ и СВ могут передаваться звуки с частотой до 10 кГц. Такую же ширину, равную 10 кГц, имеет каждая боковая полоса. Полная ширина спектра частот сигнала радиостанции составляет 20 кГц.

Чтобы не мешать друг другу, радиостанции должны иметь несущие частоты, различающиеся не меньше чем на 20 кГц. Аналогичная ситуация и в других диапазонах.

В эфире тесно. Если музыка и речь могут передаваться полосой частот 10–20 кГц, то телевидению нужно 5–6 МГц. Во всем диапазоне от ДВ до КВ удалось бы разместить только два вещающих на весь мир телеканала. Это никого не устраивает. Потому на волнах длиннее десяти метров (ДВ, СВ, КВ), способных огибать земной шар, разместили несколько тысяч радиовещательных станций, а телевидению отвели УКВ.

Теперь, зная, что радиопередача занимает определенную полосу частот, можно понять, как образуются помехи радиоприему.

Если несущие двух станций отличаются меньше чем на 20 кГц, то их боковые полосы перекрываются и становятся одновременно слышны при приеме. Поэтому каждой станции отводится частота в соответствии с международными соглашениями. Предусмотрены в них и специальные диапазоны для работы любителей.

Перейти на страницу:

Похожие книги

Как стать леди
Как стать леди

Впервые на русском – одна из главных книг классика британской литературы Фрэнсис Бернетт, написавшей признанный шедевр «Таинственный сад», экранизированный восемь раз. Главное богатство Эмили Фокс-Ситон, героини «Как стать леди», – ее золотой характер. Ей слегка за тридцать, она из знатной семьи, хорошо образована, но очень бедна. Девушка живет в Лондоне конца XIX века одна, без всякой поддержки, скромно, но с достоинством. Она умело справляется с обстоятельствами и получает больше, чем могла мечтать. Полный английского изящества и очарования роман впервые увидел свет в 1901 году и был разбит на две части: «Появление маркизы» и «Манеры леди Уолдерхерст». В этой книге, продолжающей традиции «Джейн Эйр» и «Мисс Петтигрю», с особой силой проявился талант Бернетт писать оптимистичные и проникновенные истории.

Фрэнсис Ходжсон Бернетт , Фрэнсис Элиза Ходжсон Бёрнетт

Классическая проза ХX века / Проза / Прочее / Зарубежная классика