Читаем Изложение системы мира полностью

Водяные пары, находящиеся в атмосфере, при том же давлении и температуре имеют меньшую плотность, чем воздух, и, следовательно, уменьшают общую плотность атмосферы. А так как их количество, при прочих равных условиях, больше при сильной жаре, это частично можно учесть, несколько увеличив число 0.00375, выражающее расширение воздуха на каждый градус повышения температуры. Я нахожу, что, увеличив его до 0.004, можно достаточно хорошо удовлетворить совокупности наблюдений и употреблять его, по крайней мере, до тех пор, пока после длинного ряда наблюдений с гигрометром этот прибор не будет привлечён для барометрического определения высот.

15

До сих пор мы предполагали силу тяжести постоянной. Но мы уже видели, что с увеличением высоты она немного уменьшается. Это требует от нас нового увеличения высоты, полученной по понижению барометра. Мы учтём это уменьшение силы тяжести, немного увеличив постоянный коэффициент. Сравнивая большое число барометрических наблюдений, сделанных у подножия и на вершине многих гор, высота которых была точно измерена тригонометрическим путём, г-н Рамоп получил для этого коэффициента значение 18 393 м, но с учётом изменения силы тяжести оно уменьшается до 18 336 м. Последнее значение коэффициента для отношения веса ртути к весу такого же объёма воздуха даёт величину 10477.9 на параллели 50

g
[45°] при температуре 0° и высоте столба ртути барометра, равной 0.76 м. Г-да Био и Араго, взвешивая с большой тщательностью известные объёмы ртути и воздуха, нашли для этого отношения, приведённого к той же параллели, величину 10466.6, но они употребляли очень сухой воздух вместо того, чтобы брать его из окружающей атмосферы, в которой он всегда смешан с большим или меньшим количеством водяных паров, определяемым с помощью гигрометра. Эти пары легче воздуха в отношении почти 10 к 17. Поэтому непосредственные измерения должны давать немного меньшее отношение веса ртути к воздуху, чем барометрические наблюдения. Эти опыты уменьшают коэффициент 18 336 м до величины 18 316.6 м. Чтобы его поднять до величины 18 393 м, даваемой наблюдениями барометра, пришлось бы, если не учитывать изменения силы тяжести, предположить слишком большую среднюю влажность атмосферы. Таким образом, уменьшение силы тяжести с высотой заметно даже при барометрических наблюдениях. Коэффициент 18 393 м почти точно исправляет влияние этого уменьшения. Но другое изменение силы тяжести, зависящее от широты места наблюдения, также должно влиять на этот коэффициент. Он был определён для широты, которую без ощутимой ошибки можно считать 50g [45°], и должен быть увеличен на экваторе, где сила тяжести меньше, чем на этой широте. В самом деле, ясно, что на экваторе надо подняться выше, чтобы перейти от данного давления атмосферы к давлению, меньшему на определённую величину, так как в интервале вес воздуха меньше. Следовательно, коэффициент 18 393 м должен изменяться так же, как длина секундного маятника, укорачивающегося или удлиняющегося в зависимости от увеличения или уменьшения силы тяжести. На основании сказанного ранее об изменении этой длины легко заключить, что к этому коэффициенту надо прибавить произведение 26.164 м на косинус удвоенной широты места наблюдения.

Наконец, к высотам барометра надо придать ещё небольшую поправку, зависящую от разности температур ртути в барометре на обеих станциях. Чтобы хорошо знать эту разность, в оправу барометра вставляют небольшой ртутный термометр таким образом, чтобы ртуть в этих двух приборах была всегда почти одинаковой температуры. На более холодной станции ртуть плотнее, и поэтому в барометре столбик ртути уменьшен. Чтобы его привести к длине, которую он имел бы, если бы его температура равнялась температуре на более тёплой станции, его надо увеличить на его 5550-ю часть, умноженную на число градусов в разности температур ртути на обеих станциях.

Итак, вот правило для барометрического определения высот, которое мне кажется одновременно и наиболее точным, и самым простым. Прежде всего исправляется, как было указано, отсчёт высоты ртути в барометре более холодной станции. Затем к коэффициенту 18 393 м прибавляется произведение 26.164 м на косинус удвоенной широты. Исправленный таким образом коэффициент умножается на табличный логарифм отношения наибольшей исправленной высоты барометра к наименьшей. Наконец, это произведение умножается на удвоенную сумму градусов термометров, указывающих температуру воздуха на каждой станции, и полученное произведение, разделённое на тысячу, прибавляется к предыдущему. Полученная сумма с большим приближением даёт превышение верхней станции над нижней, особенно если отсчёты барометров сделаны в наиболее благоприятное время суток, которым представляется полдень.16

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Прорыв за край мира
Прорыв за край мира

Последние несколько лет стали эпохой триумфа теории космологической инфляции, объясняющей происхождение Вселенной. Эта теория зародилась в начале 1980-х годов на уровне идей, моделей и сценариев, давших ряд четких проверяемых предсказаний. Сейчас благодаря прецизионным измерениям реликтового излучения, цифровым обзорам неба и другим наблюдениям эти предсказания подтверждаются одно за другим. В книге отражено развитие главных идей космологии на протяжении последних ста лет, при этом главное внимание уделено теории космологической инфляции. Книга содержит интервью с учеными, внесшими решающий вклад в становление этой теории. Дополнительная научно-фантастическая сюжетная линия иллюстрирует основную на более простом материале: развитие космологии разумных существ подледного океана спутника Юпитера Европы. Книга рассчитана на широкий круг читателей, хотя уровень сложности материала сильно отличается от главы к главе. Автор исходил из принципа: «Любой читатель — от школьника до профессионального физика — сможет найти в книге то, что ему понятно и интересно».

Борис Евгеньевич Штерн

Астрономия и Космос
История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука