Читаем Изложение системы мира полностью

Прошло лишь около половины века, как астрономы ввели в таблицы рефракции высоту барометра и термометра. Стремление к исключительной точности, которую теперь стараются достичь в астрономических наблюдениях и инструментах, привело к желанию знать влияние влажности воздуха на его преломляющую силу и, если это необходимо, учитывать показания гигрометра. Чтобы дополнить непосредственные наблюдения, которых было мало в этой области, я исходил из гипотезы, что действие воды и её паров на свет пропорционально их плотности, — гипотезы тем более правдоподобной, что гораздо более глубокие изменения в состоянии тел, чем переход из жидкого состояния в парообразное, не изменяют сколько-нибудь заметно отношение между их влиянием на свет и их плотностью. Приняв эту гипотезу, о преломлении света водяным паром можно судить по измеренному с большой точностью преломлению, которое испытывает луч света, переходя из воздуха в воду. Так, находим, что преломляющая способность водяного пара превышает таковую способность воздуха, приведённого к той же плотности; но при одинаковом давлении плотность воздуха превышает плотность пара почти в таком же отношении. Отсюда следует, что преломление, возникающее в водяных парах, рассеянных в атмосфере, близко к преломлению в воздухе, место которого эти пары занимают, и поэтому влияние влажности воздуха на ею преломляющие свойства незаметно. Г-н Био подтвердил этот результат путём непосредственных опытов, показавших, кроме того, что температура влияет на рефракцию только через производимое ею изменение плотности воздуха. Наконец, г-н Араго, применив очень хитроумный и точный способ, убедился в том, что влияние влажности воздуха на рефракцию неощутимо.

Предыдущая теория предполагает, что атмосфера совершенно спокойна, так что плотность воздуха на равных высотах над уровнем моря повсюду одинакова. Но ветер и неравенство температур нарушают это предположение и могут заметным образом действовать на рефракцию. Каковы бы ни были усовершенствования астрономических инструментов, влияние этих возмущающих причин, если оно существенно, всегда будет препятствием для достижения высшей точности наблюдений, число которых придётся сильно увеличивать, чтобы это влияние преодолеть. К счастью, мы уверены, что это влияние не может превысить очень малое число секунд.

6

Атмосфера ослабляет свет небесных тел, особенно на горизонте, где их лучи пересекают её на большой протяжённости. Из опытов Бугера следует, что если интенсивность света от небесного светила, находящегося в зените, при входе этого света в атмосферу и при показаниях барометра 0.76 м принять за единицу, то, дойдя до наблюдателя, она ослабляется до 0.8123. В этом случае, если бы атмосфера везде была одинаково плотной и имела температуру 0°, высота равнялась бы 7945 м. Естественно думать, что ослабление луча света, проходящего через атмосферу, будет таким же, как при этих гипотезах, так как он встречает на своём пути то же число молекул воздуха. Итак, слой воздуха толщиной 7945 м с указанной выше плотностью уменьшает силу света до 0.8123. Легко вывести ослабление света в слое воздуха такой же плотности и любой толщины, так как очевидно, что если интенсивность света уменьшается до одной четверти, пересекая данную толщу воздуха, то ещё один слой такой же толщины уменьшит эту четверть до одной шестнадцатой первоначальной величины. Отсюда видно, что, если толщина слоя увеличивается в арифметической прогрессии, интенсивность света уменьшается в геометрической. Следовательно, логарифмы интенсивности пропорциональны толщине слоёв. Итак, чтобы получить табличный логарифм интенсивности света, прошедшего слой воздуха некоторой толщины, надо умножить число —0.0902835 — табличный логарифм числа 0.8123 — на отношение этой толщины к 7945 м, а если плотность больше или меньше, чем предыдущая, надо увеличить или уменьшить этот логарифм в той же пропорции.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Прорыв за край мира
Прорыв за край мира

Последние несколько лет стали эпохой триумфа теории космологической инфляции, объясняющей происхождение Вселенной. Эта теория зародилась в начале 1980-х годов на уровне идей, моделей и сценариев, давших ряд четких проверяемых предсказаний. Сейчас благодаря прецизионным измерениям реликтового излучения, цифровым обзорам неба и другим наблюдениям эти предсказания подтверждаются одно за другим. В книге отражено развитие главных идей космологии на протяжении последних ста лет, при этом главное внимание уделено теории космологической инфляции. Книга содержит интервью с учеными, внесшими решающий вклад в становление этой теории. Дополнительная научно-фантастическая сюжетная линия иллюстрирует основную на более простом материале: развитие космологии разумных существ подледного океана спутника Юпитера Европы. Книга рассчитана на широкий круг читателей, хотя уровень сложности материала сильно отличается от главы к главе. Автор исходил из принципа: «Любой читатель — от школьника до профессионального физика — сможет найти в книге то, что ему понятно и интересно».

Борис Евгеньевич Штерн

Астрономия и Космос
История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука