Читаем Как изобрести всё. Создай цивилизацию с нуля полностью

Существование атомов сложно доказать, если под рукой у вас нет исключительно сильных микроскопов, но вы можете наблюдать их в действии. Пылинка в стакане воды, например, движется случайным образом, и это «[вставь свое имя] движение» (а вовсе не «броуновское движение», по имени ботаника Роберта Броуна, открывшего феномен в 1827 н. э.) имеет место по той причине, что пылинку постоянно с разных сторон ударяют крохотные частички (то есть молекулы) воды.

Откуда берутся разные элементы?

Большой взрыв (13 799 000 000 до н. э., и точную дату стоило бы проверить, если бы ваша машина времени не забуксовала) отправил материю во вселенную, и эта материя сгустилась (большей частью) в водород, простейший элемент. Громадные массы водорода постепенно собрались в настолько исполинские шары газа, что давление его собственного веса начало реакцию синтеза водорода (с одним протоном) в гелий (с двумя) в ядре. И это, во-первых, освободило прорву энергии, а во-вторых, оказалось тем, что заставляет светиться наше (и любое другое) Солнце.

Процесс может длиться от миллионов до триллионов лет (в зависимости от размеров звезды), до тех пор пока водород не выгорит. Когда это произойдет и если звезда достаточно велика, то давления в ней хватит, чтобы начать синтез гелия в более тяжелые элементы: от лития (3 протона) и до углерода (6 протонов)[208], причем углерода получается больше всего. Когда и гелий заканчивается, а звезда опять же достаточно велика, она начинает синтез углерода, и тут формируются элементы до магния включительно (12 протонов). Эта стадия может продолжаться около шести сотен лет. Если звезда супергигантская, то процесс повторяется, и создаются элементы вплоть до железа (26 протонов).

На этом месте все прерывается, поскольку на синтез железа тратится больше энергии, чем получается в процессе, так что звезда, принявшаяся за это дело, быстро погибает – обычно менее чем за день. Что происходит с ней после смерти, зависит от размера: либо она съеживается в постепенно остывающий «белый карлик», который в конечном счете, когда остынет, станет «черным карликом» (штука столь плотная, что кубический сантиметр ее вещества весит более трех тонн); либо становится нейтронной звездой, тем же карликом, но со столь мощным внутренним давлением, что вся материя внутри упаковывается так же плотно, как и в атомном ядре (кубический сантиметр весит порядка миллиарда тонн); либо превращается в черную дыру, то есть настолько тяжелую нейтронную звезду, что даже свет не в силах преодолеть ее тяготение (и определенно, вы не захотите баловаться даже с кубическим сантиметром такой фиговины).

Теперь нам ясно, откуда берутся элементы до железа: из синтеза в недрах звезд.

Но откуда взялись элементы более тяжелые?

Ну, мы перескочили через стадию несколькими абзацами выше: когда звезды умирают, иногда газ, обычно удерживаемый на периферии звезды энергией ее излучения, обнаруживает, что излучение сгинуло, а гравитация осталась, и тогда звезда претерпевает финальное, катастрофическое сжатие. Вся ее масса обрушивается внутрь, продуцируя такой рост температуры и давления, что протоны и электроны переплавляются в нейтроны.

А потом она взрывается.

На самом деле она взрывается с такой силой, что может помериться даже с Большим взрывом. Эти взрывы, именуемые суперновыми звездами, швыряют материю в пространство в виде настоящего шторма из элементарных частиц и на короткое время, около месяца, горят ярче тысячи обычных звезд.

В процессе возникают очень нестабильные ядра, распадающиеся на другие элементы, включая и те, что тяжелее железа. И это делает сверхновые единственным явлением во вселенной, способным изготовить такие штуки, по крайней мере до 1950 н. э., когда мы начали их синтезировать на Земле.

И теперь вы знаете, почему водород и гелий составляют подавляющую массу всей материи вселенной: нам требуются звезды, чтобы (неспешно) изготовить что-либо еще. Прочие элементы составляют около 0,04 % массы вселенной, и это означает, что, как и все остальные живые существа, состоящие в основном из углерода, они достаточно незначительны, чтобы быть отброшены как ошибка при округлении.

Если вы расстроились по этому поводу, то просто вспомните, откуда вы пришли: изумительные, грандиозные взрывы.

Что я могу сделать из элементов?

Технически: все.

И чтобы помочь вам начать, мы обеспечили вас инструкциями по изготовлению многих полезных химических веществ в приложении С, к которому вы будете часто обращаться, учитывая ваши нынешние обстоятельства. Мы также включили в описание каждого вещества химический контекст – то, что не обязательно знать, чтобы производить определенные вещи, но что может пригодиться вам или вашим потомкам в процессе создания химии как науки.

Перейти на страницу:

Все книги серии Удовольствие от науки

Отпускается без рецепта. Лекарства, без которых нам не жить
Отпускается без рецепта. Лекарства, без которых нам не жить

Эта книга о легендарных лекарствах, которые можно найти в каждой аптеке и в каждой домашней аптечке, лекарствах давних и новых, производимых в России. О 100-летии отечественной фармацевтики и ее создателях. Первый пенициллин был получен именно в нашей стране еще в 1942 году. У нас были произведены уникальные вакцины, некоторые из них спасли человечество. Нам есть чем гордиться и в настоящем. Во многих препаратах, выпускаемых зарубежными производителями, угадывается влияние самой большой в мире российской химической коллекции веществ, используемых для создания новых препаратов. Перед вами небольшое медицинское расследование, захватывающий рассказ о легендарных лекарствах, спасших и спасающих Россию, о лекарствах, без которых нам не жить!

Алёна Григорьевна Жукова , Елена Мекшун , Константин Анохин , Наталья Мушкатёрова , Полина Звездина

Альтернативная медицина / Медицина и здоровье / Дом и досуг

Похожие книги

Лиссабон. Путеводитель
Лиссабон. Путеводитель

Представьте себе, что Америки еще нет. Вы в городе на краю земли, а дальше только океан. В таком городе вырастают мореплаватели, женщины поют песни о судьбе, а из сушеной трески умеют готовить 365 блюд. Говорят, основателем Лиссабона был Одиссей. И городу досталось немало приключений: мавры и испанцы, чума и землетрясения, колониальный «золотой век» и диктатура. Прикоснитесь к его истории и вслушайтесь в его песни.Исторический обзор приводит важнейшие события из истории Лиссабона. Все главные достопримечательности города и окрестностей перечислены в одном кратком списке с комментариями. Подробные очерки посвящены португальской кухне и винам (отдельно портвейну) и исполнителям городского фольклора – музыки фаду.В конце каждой главы есть справочный раздел с нужными адресами, часами работы, нашими рекомендациями по ресторанам и магазинам. В завершающем разделе «Информация для туристов» вы найдете много фактов и советов, которые пригодятся вам еще до начала путешествия в Лиссабон, и мини-разговорник.

Габриэль Кальво , Робин Даниэль Фроммер , Сабина Чашель , Юрген Бергманн

Руководства / Путеводители / Словари и Энциклопедии
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература