Читаем Как машины думают? Математические основы машинного обучения полностью

Более того, математика играет важную роль в разработке безопасных и справедливых систем искусственного интеллекта. В последние годы все больше внимания уделяется этическим вопросам, связанным с применением ИИ. Математические методы могут помочь выявить и устранить возможные предвзятости в данных, а также гарантировать, что алгоритмы принимают справедливые и обоснованные решения.

Понимание математики – это ключ к пониманию искусственного интеллекта. Без этого фундамента невозможно создавать, анализировать и улучшать современные технологии, которые играют все более важную роль в нашей жизни. Математика не только объясняет, как работают машины, но и помогает нам принимать осознанные решения о том, как и где их использовать.

Глава 1: От линейной алгебры к искусственному интеллекту

Мир современных технологий, основанных на машинном обучении и искусственном интеллекте (ИИ), кажется невероятно сложным. Нам кажется, что это магия, когда машины могут распознавать лица, переводить тексты или играть в сложные игры лучше человека. Но за этим стоит не магия, а строгие математические принципы, такие как линейная алгебра, которые формируют основу этих процессов. В этой главе мы рассмотрим, что такое линейная алгебра, ее ключевые понятия и как она лежит в основе современных вычислительных систем, включая нейронные сети и методы анализа данных.

Что такое линейная алгебра и как она лежит в основе вычислений

Линейная алгебра – это раздел математики, который занимается изучением векторов, матриц, и их свойств. Эта область играет центральную роль в вычислениях, поскольку многие сложные математические задачи можно упростить, представив их в виде линейных уравнений. Эти уравнения описывают отношения между различными объектами и позволяют находить решения через манипуляции с матрицами и векторами.

Вычисления с использованием линейной алгебры стали возможны благодаря изобретению компьютеров, которые могут быстро выполнять математические операции с большими наборами данных. Одним из главных применений линейной алгебры в вычислениях является обработка многомерных данных. Пример – изображение, которое можно представить в виде матрицы чисел, где каждое число соответствует яркости пикселя.

Линейная алгебра используется в таких ключевых задачах машинного обучения, как обучение нейронных сетей, решение систем уравнений, и оптимизация. Она помогает работать с большими объемами данных и извлекать полезные сведения из них.

Основные понятия: векторы, матрицы, преобразования

Чтобы понять, как линейная алгебра применяется в искусственном интеллекте, необходимо освоить основные понятия – векторы, матрицы и линейные преобразования.

Векторы

Вектор – это объект, который имеет длину (или величину) и направление. Векторы могут представлять различные объекты: точки в пространстве, силу, движение и даже слова или изображения. В машинном обучении векторами часто описываются объекты данных: например, каждая точка данных (будь то изображение, текст или аудиозапись) может быть представлена вектором, где каждое значение вектора представляет конкретную характеристику объекта.

Вектор можно представить в виде строки или столбца чисел, которые называются компонентами вектора. В пространстве размерности n вектор будет иметь n компонент. В двумерном пространстве это будет обычный вектор, например, (3, 4), в трехмерном – (2, -1, 7), а в более высоких измерениях (например, когда мы работаем с большими наборами данных) – вектор может иметь десятки, сотни или тысячи компонент.

Матрицы

Матрица – это таблица чисел, состоящая из строк и столбцов. Она может использоваться для описания множества векторов одновременно или для представления преобразований данных. Матрицы играют ключевую роль в вычислениях, потому что с их помощью можно эффективно описывать и решать сложные системы линейных уравнений.

Матрицы могут выполнять разные функции. Например, они могут кодировать изображения, где каждая строка и столбец матрицы представляет пиксель и его цветовое значение. В машинном обучении матрицы также используются для представления данных: например, каждый ряд в матрице может описывать отдельный объект данных, а каждый столбец – его характеристику.

Матрицы можно умножать на векторы или друг на друга, что позволяет создавать сложные преобразования данных. Например, в обучении нейронных сетей матрицы весов помогают преобразовывать входные данные и принимать решения на основе этих данных.

Линейные преобразования

Линейные преобразования – это математические операции, которые изменяют векторы или матрицы, сохраняя при этом линейную структуру данных. Линейное преобразование может быть описано как умножение вектора на матрицу. Это важно в машинном обучении, потому что многие алгоритмы основаны на линейных преобразованиях данных для выявления закономерностей и прогнозирования.

Перейти на страницу:

Похожие книги

Формула грез. Как соцсети создают наши мечты
Формула грез. Как соцсети создают наши мечты

Каждый день мы конструируем свой идеальный образ в соцсетях: льстящие нам ракурсы, фильтры и постобработка, дорогие вещи в кадре, неслучайные случайности и прозрачные намеки на успешный успех. За двенадцать лет существования Instagram стал чем-то большим, чем просто онлайн-альбомом с фотографиями на память, – он учит чувствовать и мечтать, формируя не только насмотренность, но и сами объекты желания. Исследовательница медиа и культуры селебрити Катя Колпинец разобралась в том, как складывались образы идеальной жизни в Instagram, как они подчинили себе общество и что это говорит о нас самих. Как выглядят квартира/путешествие/отношения/работа мечты? Почему успешные инстаблогеры становятся ролевыми моделями для миллионов подписчиков? Как реалити-шоу оказались предвестниками социальных сетей? Как борьба с шаблонами превратилась в еще один шаблон? В центре «Формулы грез» – комичное несовпадение внешнего и внутреннего, заветные мечты миллениалов и проблемы современного общества, в котором каждый должен быть «видимым», чтобы участвовать в экономике лайков и шеров.Instagram и Facebook принадлежат компании Meta, которая признана в РФ экстремистской и запрещена.В формате PDF A4 сохранён издательский дизайн.

Екатерина Владимировна Колпинец

ОС и Сети, интернет / Прочая компьютерная литература / Книги по IT
Все под контролем: Кто и как следит за тобой
Все под контролем: Кто и как следит за тобой

К каким результатам может привести использование достижений в сфере высоких технологий по отношению к нашей частной жизни в самом ближайшем будущем? Как мы можем защитить свою частную жизнь и независимость в условиях неконтролируемого использования новейших достижений в этой сфере? Эта проблема тем более актуальна, что даже США, самая свободная демократия мира, рискует на наших глазах превратиться в государство всеобщего учета и тотального контроля.Книга талантливого публициста и известного специалиста по компьютерным технологиям Симеона Гарфинкеля – это анализ тех путей, по которым может осуществляться вторжение в частную жизнь, и способов, с помощью которых мы можем ему противостоять.

Симеон Гарфинкель

Публицистика / Прочая компьютерная литература / Документальное / Книги по IT