Читаем Как машины думают? Математические основы машинного обучения полностью

Например, в нейронных сетях каждое преобразование между слоями сети можно рассматривать как линейное преобразование. Входные данные преобразуются матрицей весов, и результат этого преобразования проходит через нелинейные функции для принятия решений.

Линейные преобразования позволяют эффективно изменять данные, обнаруживать ключевые признаки в них и адаптировать модели машинного обучения к различным задачам.

Примеры использования в машинном обучении: нейронные сети, метод главных компонент

Теперь, когда мы познакомились с основными понятиями линейной алгебры, давайте рассмотрим, как они используются в практических приложениях машинного обучения.

Нейронные сети

Нейронные сети – это один из основных инструментов машинного обучения. Они имитируют работу человеческого мозга, обрабатывая данные через множество слоев "нейронов". Каждый нейрон получает на вход информацию, преобразует ее с помощью линейных преобразований и передает результат на следующий уровень.

Основная идея нейронных сетей заключается в том, что данные, представленные векторами, проходят через сеть, где на каждом этапе применяются матричные операции. Эти операции позволяют выявлять важные признаки данных, такие как черты изображения или ключевые слова в тексте.

Процесс обучения нейронной сети заключается в нахождении таких матриц весов, которые позволят сети правильно предсказывать результаты на основе входных данных. Например, в задаче распознавания изображений сеть может "выучить" такие весовые коэффициенты, которые позволят отличать котов от собак на изображениях.

Линейная алгебра играет важную роль в этом процессе, потому что все вычисления, включая умножение векторов и матриц, позволяют модели эффективно преобразовывать и интерпретировать данные.

Метод главных компонент (PCA)

Метод главных компонент – это один из наиболее распространенных методов анализа данных, который также основан на линейной алгебре. PCA используется для уменьшения размерности данных, сохраняя при этом как можно больше информации. Это особенно полезно, когда у нас есть большие наборы данных с множеством переменных.

Суть метода заключается в том, чтобы найти такие линейные комбинации исходных переменных, которые максимально объясняют вариативность данных. Эти комбинации называются главными компонентами. Главные компоненты можно получить путем разложения матриц данных, что позволяет выявить основные закономерности в данных и упростить их анализ.

Например, если у вас есть данные о тысячах людей с десятками различных характеристик (возраст, рост, вес, уровень дохода и т. д.), PCA может помочь найти те несколько характеристик, которые лучше всего объясняют различия между людьми. Это позволяет упростить анализ данных и сделать его более эффективным.

Метод главных компонент широко используется в задачах распознавания изображений, анализа текстов, биоинформатики и других областях, где важно уменьшить количество переменных без потери важной информации.

Линейная алгебра является основой многих современных вычислительных систем и методов машинного обучения. Она предоставляет инструменты для работы с многомерными данными и позволяет эффективно их анализировать, преобразовывать и интерпретировать.

Глава 2: Дифференциальное исчисление и оптимизация

Дифференциальное исчисление звучит как нечто сложное и доступное только математикам или инженерам, но на самом деле оно гораздо ближе к нашей жизни, чем кажется. Математика давно стала основой множества технологий, которые окружают нас, и дифференциальное исчисление – одно из главных её орудий. Это именно тот инструмент, который помогает нам понимать, как вещи меняются, оптимизировать процессы и принимать правильные решения.

Перейти на страницу:

Похожие книги

Формула грез. Как соцсети создают наши мечты
Формула грез. Как соцсети создают наши мечты

Каждый день мы конструируем свой идеальный образ в соцсетях: льстящие нам ракурсы, фильтры и постобработка, дорогие вещи в кадре, неслучайные случайности и прозрачные намеки на успешный успех. За двенадцать лет существования Instagram стал чем-то большим, чем просто онлайн-альбомом с фотографиями на память, – он учит чувствовать и мечтать, формируя не только насмотренность, но и сами объекты желания. Исследовательница медиа и культуры селебрити Катя Колпинец разобралась в том, как складывались образы идеальной жизни в Instagram, как они подчинили себе общество и что это говорит о нас самих. Как выглядят квартира/путешествие/отношения/работа мечты? Почему успешные инстаблогеры становятся ролевыми моделями для миллионов подписчиков? Как реалити-шоу оказались предвестниками социальных сетей? Как борьба с шаблонами превратилась в еще один шаблон? В центре «Формулы грез» – комичное несовпадение внешнего и внутреннего, заветные мечты миллениалов и проблемы современного общества, в котором каждый должен быть «видимым», чтобы участвовать в экономике лайков и шеров.Instagram и Facebook принадлежат компании Meta, которая признана в РФ экстремистской и запрещена.В формате PDF A4 сохранён издательский дизайн.

Екатерина Владимировна Колпинец

ОС и Сети, интернет / Прочая компьютерная литература / Книги по IT
Все под контролем: Кто и как следит за тобой
Все под контролем: Кто и как следит за тобой

К каким результатам может привести использование достижений в сфере высоких технологий по отношению к нашей частной жизни в самом ближайшем будущем? Как мы можем защитить свою частную жизнь и независимость в условиях неконтролируемого использования новейших достижений в этой сфере? Эта проблема тем более актуальна, что даже США, самая свободная демократия мира, рискует на наших глазах превратиться в государство всеобщего учета и тотального контроля.Книга талантливого публициста и известного специалиста по компьютерным технологиям Симеона Гарфинкеля – это анализ тех путей, по которым может осуществляться вторжение в частную жизнь, и способов, с помощью которых мы можем ему противостоять.

Симеон Гарфинкель

Публицистика / Прочая компьютерная литература / Документальное / Книги по IT