Но погодите минутку. Как это – «были зарегистрированы нейтрино от SN1987A»? Как можно было зарегистрировать то, что, по всей видимости, не может быть зарегистрировано? Напомним ещё раз: одиночное нейтрино может пролететь сквозь свинцовую стену толщиной в несколько световых лет, не провзаимодействовав ни с одним атомом свинца. Каким же, спрашивается, образом, удалось изловить эти нейтрино? При помощи изощрённых физических экспериментов. Кроме приёмников, размещённых вблизи источников искусственно созданных нейтрино – ускорителей частиц и ядерных реакторов – существует много нейтринных обсерваторий, занятых поисками космических источников высокоэнергетических нейтрино. Один из примеров – так называемый Супер-K или Супер-Камиоканде, нейтринный приёмник в Японии, расположенный на глубине 1 км под землёй. В него залито более 50000 тонн чистой воды. Другой нейтринный телескоп – Айскьюб (IceCube) на Южном полюсе, глубоко скрытый под антарктическими льдами. Эти и другие эксперименты – передний край науки и техники.
Учёные, которые надеются уловить сигнал от регистрации космического нейтрино, понимают, что такой сигнал должен быть очень слабым. Большинство нейтрино, как мы уже знаем, прошивают земной шар насквозь, так что слой почвы и камня над глубоко упрятанными под ним приёмниками действует как естественная защита от всех других частиц, на фоне которых сигнал от нейтрино был бы неразличим. Но даже при таких мерах предосторожности сигнал от нейтрино еле заметен. В случае SN1987A три нейтринных обсерватории на Земле зарегистрировали огромное число этих частиц – 25! Это, конечно, ничтожные крохи от ста триллионов, которые проходят через каждого из нас в одну секунду. Но и величина энергии этих 25 избранников, и тот факт, что они пришли одновременно друг с другом и с другими наблюдениями SN1987A, выполненными методами обычной астрономии, убедительно свидетельствовали: источником этих нейтрино было ядро коллапсирующей звезды.
Нейтрино играют в недрах умирающей звезды двойную роль. Как мы уже говорили, они пришли на Землю ещё до того, как мы увидели вспышку SN1987A в наши телескопы – на целых три часа раньше! Именно после этого была создана Система раннего предупреждения о сверхновых (SNEWS) – сеть нейтринных обсерваторий, предназначенная для регистрации самых первых сигналов о предстоящем взрыве сверхновой в нашей или в одной из окрестных галактик. Нейтрино приходят на Землю раньше, чем свет и другие частицы, – именно потому, что могут пройти сквозь сверхплотное железное ядро умирающей звезды. Свет и частицы вещества взаимодействуют с веществом ядра гораздо сильнее и поэтому тормозятся, вырываясь в межзвёздное пространство значительно позже. Однако, именно огромное количество нейтрино в конечном счёте и вызывает рвущуюся наружу взрывную ударную волну, так как лишь небольшая её часть необходима, чтобы разогреть выброшенное вещество звезды и межзвёздный газ.
При взрыве сверхновой образуется огромное число нейтрино. Для каждой индивидуальной частицы вероятность провзаимодействовать со звёздными атомами ничтожно мала; большинство частиц уходят в глубины Вселенной. Но количество нейтрино настолько невообразимо велико, что даже той их крохотной части, которая всё же сталкивается с атомами, оказывается достаточно, чтобы могучим толчком разорвать вещество звезды и расшвырять его во все стороны.
Когда этот грандиозный фейерверк заканчивается, от звезды, превратившейся в сверхновую, едва ли что-то остаётся. Как мы уже говорили, ядра самых массивных звёзд исчезают из виду, образуя чёрные дыры. Об этих экзотических объектах мы ещё поговорим.
Ядра менее массивных звёзд продолжают существовать. Во время взрыва они подвергаются чудовищному сжатию, вследствие которого масса, превышающая солнечную, оказывается стиснута в шар поперечником всего около 20 километров. Такие объекты состоят почти исключительно из очень плотно упакованных нейтронов. Бесхитростно называемые
Но их тайна остаётся неразгаданной. В нейтронной звезде нет ядерного горения. В отличие от обычной звезды, её равновесие не поддерживается направленными наружу потоками энергии из звёздного ядра.