Пока Гейзенберг и другие разрабатывали матричную механику, которая привела к принципу неопределённости, Эрвин Шрёдингер и его коллеги работали над тем, что казалось совершенно отличным от неё математическим аппаратом для квантовой физики. В то время волновая физика была хорошо понятна и очень популярна благодаря широкому применению уравнений Максвелла для электромагнитных волн. То, что сейчас известно как
Но на этом история не заканчивалась. Волна, движение которой описывало уравнение, не была обычной волной, к каким мы привыкли – переносящей энергию из одного места в другое. Не была она связана и с физическими свойствами исследуемого объекта – например, с положением электрона. Макс Борн продемонстрировал, что волновую функцию можно использовать для вычисления вероятностей исходов измерений. Введение вероятности в математический аппарат теории многим не понравилось: детерминистские законы, на которых было построено здание предшествовавшей теории квантов физики, многократно приводили к блестящим результатам, доказывавшим их правильность. Вы, может быть, слышали знаменитые слова Эйнштейна: «Бог не играет в кости!» Однако понятие вероятности всё же заключало в себе идею неопределённости, к которой пришёл Гейзенберг, так что какие-то основания у таких нововведений всё же были. В конечном счёте данная Борном статистическая интерпретация уравнения Шрёдингера оказалась неопровержимой и утвердила квантовую физику как вероятностную теорию.
С современной точки зрения смятение, которым сопровождалось развитие квантовой теории, трудно понять. В университетских аудиториях физических факультетов всего мира студентам рассказывают об уравнении Шрёдингера и о том, что оно предсказывает исход лабораторных экспериментов. Волновая функция и её уравнение обеспечивают механизм для этих предсказаний, для управления экспериментом и в итоге – для принятия инженерных и технических решений. Типичные домашние задания студентам-физикам сводятся к решению той или иной реализации уравнения Шрёдингера. Самый обычный пример – решение уравнения Шрёдингера для атома водорода. Это решение, точно объясняющее энергетические уровни водородного атома, построено на комплексных функциях, называемых сферическими гармониками, которые прекрасно описывают формы
Много десятилетий ответом на метафизический вопрос о том, что такое волновая функция на деле, служит одиозная фраза «
Интерпретации волновой функции тесно связаны с интерпретациями вероятности, сторонников которых можно чётко разделить на два лагеря. Первая группа рассматривает вероятности как