Читаем Как появилась Вселенная? Большие и маленькие вопросы о космосе полностью

Пока Гейзенберг и другие разрабатывали матричную механику, которая привела к принципу неопределённости, Эрвин Шрёдингер и его коллеги работали над тем, что казалось совершенно отличным от неё математическим аппаратом для квантовой физики. В то время волновая физика была хорошо понятна и очень популярна благодаря широкому применению уравнений Максвелла для электромагнитных волн. То, что сейчас известно как уравнение Шрёдингера, было уравнением движения для некоего явления, названного Шрёдингером «волновой функцией». Будучи уравнением движения, очень похожим на уравнения Ньютона и Максвелла, оно следовало знакомой парадигме теоретической физики: если были известны начальные условия, уравнение делало свою работу, предсказывая поведение волновой функции в любой будущий момент.

Но на этом история не заканчивалась. Волна, движение которой описывало уравнение, не была обычной волной, к каким мы привыкли – переносящей энергию из одного места в другое. Не была она связана и с физическими свойствами исследуемого объекта – например, с положением электрона. Макс Борн продемонстрировал, что волновую функцию можно использовать для вычисления вероятностей исходов измерений. Введение вероятности в математический аппарат теории многим не понравилось: детерминистские законы, на которых было построено здание предшествовавшей теории квантов физики, многократно приводили к блестящим результатам, доказывавшим их правильность. Вы, может быть, слышали знаменитые слова Эйнштейна: «Бог не играет в кости!» Однако понятие вероятности всё же заключало в себе идею неопределённости, к которой пришёл Гейзенберг, так что какие-то основания у таких нововведений всё же были. В конечном счёте данная Борном статистическая интерпретация уравнения Шрёдингера оказалась неопровержимой и утвердила квантовую физику как вероятностную теорию.

С современной точки зрения смятение, которым сопровождалось развитие квантовой теории, трудно понять. В университетских аудиториях физических факультетов всего мира студентам рассказывают об уравнении Шрёдингера и о том, что оно предсказывает исход лабораторных экспериментов. Волновая функция и её уравнение обеспечивают механизм для этих предсказаний, для управления экспериментом и в итоге – для принятия инженерных и технических решений. Типичные домашние задания студентам-физикам сводятся к решению той или иной реализации уравнения Шрёдингера. Самый обычный пример – решение уравнения Шрёдингера для атома водорода. Это решение, точно объясняющее энергетические уровни водородного атома, построено на комплексных функциях, называемых сферическими гармониками, которые прекрасно описывают формы орбиталей

, известных нам по учебникам физики и химии. Студентам говорят, что это некоторый способ вероятностного представления того, где реально находится электрон, – и дело с концом.

Много десятилетий ответом на метафизический вопрос о том, что такое волновая функция на деле, служит одиозная фраза «заткнись и вычисляй». То есть на сегодняшний день у громадного большинства физиков сложилось преобладающее отношение к волновой функции исключительно как к вычислительному инструменту. Но пытливый ум так легко не успокаивается. У многих действующих квантовых физиков сложилось два образа действий. Когда перед ними стоит чётко определённая задача, они действительно «затыкаются и вычисляют». Но когда вычисления выполнены и начинаются размышления, квантовые физики никогда не чувствуют себя полностью удовлетворёнными – даже собственным пониманием волновой функции. В самых общих чертах этот вопрос можно задавать по-разному. Что квантовая физика говорит о реальном мире? Какой части реальности соответствует волновая функция? Что такое вероятность в квантовой теории – часть реальности или нашего знания о ней?

Интерпретации волновой функции тесно связаны с интерпретациями вероятности, сторонников которых можно чётко разделить на два лагеря. Первая группа рассматривает вероятности как объективные. Например, когда мы говорим, что у монетки шанс выпасть решкой 50:50, эта вероятность – реальное свойство монетки, часто называемое её «смещением». Этот интуитивно очевидный способ воспринимать вероятность присущ, например, распорядителю в казино, который внимательно следит за игрой, пытаясь распознать монеты или кости, в которые игрок подложил свинец. Большую часть XX столетия математики и статистики тоже придерживались такого подхода, и он, в свою очередь, оказал большое влияние на физиков и философов этого времени.



Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Космос. Прошлое, настоящее, будущее
Космос. Прошлое, настоящее, будущее

«Земля – колыбель человечества, но нельзя вечно жить в колыбели», – сказал когда-то К.Э. Циолковский. И сегодня достаточно оглянуться назад, чтобы понять, как он был прав! Полет Гагарина, выход в космос Алексея Леонова, высадка на Луну, запуски спутников и космических станций – хроника космической эры живет в памяти ее свидетелей. Много лет журнал «Наука и жизнь» рассказывал своим читателям о достижениях космонавтики, астрономии и астрофизики. О звездных событиях на ночном небе и в лабораториях ученых можно было узнать, листая его страницы. Сегодня авторы осмысляют почти столетний опыт этого космического путешествия. И знатоки космоса, и те, кто только его открывают, найдут в этой книге много интересного!

Антон Иванович Первушин , Владимир Георгиевич Сурдин , Ефрем Павлович Левитан , Николай Владимирович Мамуна

Астрономия и Космос