Сохранение барионного числа – вещь невероятно полезная. Оно позволяет охотиться за новыми частицами в физических экспериментах стоимостью в миллиарды долларов, в ходе которых при столкновениях образуются целые каскады частиц. Да и делать домашние задания по квантовой физике оно тоже помогает. Сейчас мы посмотрим, справитесь ли
Хорошо, второй вопрос. Может ли произойти взаимодействие протон + протон → протон + протон + протон + антипротон? Заряд сохраняется – хорошо. И барионное число теперь остаётся двойкой. Похоже, да, взаимодействие возможно. И правда, такое
Протон защищён симметрией. Или, если сформулировать ту же мысль в ключе обсуждения долгого умирания пустой Вселенной, протон обречён на бесконечную жизнь. Может быть.
Неизбежны: смерть, налоги и распад
Прежде, чем перейти к разговору о том, как всё-таки протон мог бы распадаться, возможно, стоит сделать шаг назад и подумать,
В квантовой физике термином «распад» теперь обозначают любой процесс, в котором высокоэнергетическое состояние системы переходит в низкоэнергетическое. Вы можете услышать выражения вроде «атом распался» – то есть перешел в состояние с более низкой энергией. Но мы знаем, что энергия всегда сохраняется – значит, потерянная должна куда-то уйти. Вот почему все события распада сопровождаются выделением энергии. Если состояние с более низкой энергией возможно, система
Количество излучения, которое вещество испускает, очевидно, зависит от количества самого вещества. В большем количестве вещества произойдёт больше актов распада, в меньшем – меньше. Конечно, в таком грубо приближённом виде это правило не позволяет количественных предсказаний. К счастью, точная математическая формулировка ненамного сложнее: количество распадающегося вещества в каждый момент времени пропорционально его общему имеющемуся количеству. Это наблюдение очень важно: оно означает, что за фиксированный промежуток времени в любом количестве вещества распадётся одна и та же строго определённая часть. Например, если образец радиоактивного радия распадается наполовину за 1600 лет, то за следующие 1600 лет распадётся половина его остатка, и так далее. В этом случае мы называем 1600 лет
Период полураспада – фундаментальное свойство элемента; у каждого элемента он свой. У некоторых, например, у водорода-7 (водорода с шестью нейтронами), период полураспада измеряется йоктосекундами (триллионными долями триллионной доли секунды), а у других, таких, как свинец-204, занимает йоттасекунды (триллионы триллионов секунд). Период полураспада определяет устойчивость элемента: если он равен нескольким йокто-секундам, элемент крайне неустойчив, а если измеряется йоттасекундами (что в миллионы раз больше возраста Вселенной), то такой элемент, конечно, практически вечен.