Прежде чем мы займёмся исследованием влияния квантовой механики на чёрные дыры, придётся кое в чём откровенно признаться. Мы начали этот раздел с обсуждения устойчивости чёрных карликов, холодных остатков мёртвых звёзд, которые, как мы предполагаем, в будущем заполнят всю Вселенную. Они не коллапсируют благодаря давлению вырожденного вещества, что объясняется законами квантовой физики и принципом запрета Паули. Электроны, как и все фермионы, просто не могут концентрироваться в одном и том же месте: можно всё сильнее и сильнее сжимать вещество, но давление вырожденного электронного газа будет сопротивляться сжатию. Похоже, наша грядущая Вселенная, заполненная мёртвыми звездными ядрами, состоящими из вырожденного вещества, будет очень странным местом.
Но на этом рассказ не кончается. Давление вырожденного вещества приобретёт огромное значение во Вселенной будущего, но его влияние заметно и на протяжении всей прошедшей истории космоса. Уже сейчас во Вселенной существует множество нейтронных звёзд, оставшихся от более ранних звёздных поколений, от звёзд, которые жили и умирали, причём многие – задолго до рождения Солнца.
В нашем рассказе есть ещё один, последний поворот. Мы уже говорили, что красные карлики – самые маленькие звёзды, с массами около одной десятой массы Солнца. Но почему нет звёзд ещё меньшего размера? В космосе множество газовых облаков, способных коллапсировать, гравитационное сжатие ведёт к разогреву их центральных областей, но по мере того как вещество становится всё плотнее и плотнее, давление вырожденного газа быстро начинает доминировать, сопротивляясь дальнейшему сжатию. Ядра этих мертворождённых звёзд никогда не становятся достаточно горячими и плотными, чтобы в них зажёгся очаг термоядерного синтеза. Эти «коричневые карлики» обречены вечно блуждать в космосе почти незаметными.
По сути, такая недоделанная звезда есть и в нашей Солнечной системе – это планета Юпитер. Она образовалась не совсем так, как коричневые карлики, но физика здесь та же самая. Плотность в недрах Юпитера примерно вдвое ниже плотности в центре Солнца, но температура ниже в 600 с лишним раз.
Эти условия недостаточно экстремальны для термоядерного горения, но дальнейший коллапс ядра Юпитера невозможен из-за эффектов квантовой механики.
Остановитесь и подумайте об этом, когда заметите великолепный Юпитер на холодном и ясном ночном небе.
Вечна ли материя?
Через несколько сотен триллионов лет последние звёзды погаснут, и Вселенная снова погрузится во тьму. Она будет полна мёртвых звёзд, излучающих остатки своего тепла в пустоту и продолжающими остывать, приближаясь к абсолютному нулю температуры. Возможно, таким и будет конец Вселенной, её окончательное состояние, в котором она будет пребывать вечно. Но, как мы вскоре увидим, законы квантовой механики указывают, что и само вещество может в конечном счёте раствориться во тьме.
Жизнь – непрерывная битва с распадом. Без постоянного восстановления и поддержания в рабочем состоянии всё ломается – машина, дом, ваше собственное тело. Распад неизбежен. Но для Вселенной на её самом базовом уровне распад – иллюзия.
Когда разлагается пища или ржавеет железо, химические связи образуются и разрушаются, но атомы, которые образуют молекулы и кристаллы и составляют основу материи, остаются неизменными. Если мы будем ломать и разрушать всё, в конце концов у нас останутся индивидуальные атомы, из которых и состоит всё вещество во Вселенной.
Но, хоть атомы и кажутся вечными и постоянными, мы знаем: на деле это не так. Элементы образовались в ранней Вселенной и в недрах звёзд, и некоторые из них могут разрушаться вследствие радиоактивности. Но некоторые атомы и вправду оказываются устойчивыми, невосприимчивыми к ней, и действительно в целости и сохранности доживут до долгого и тёмного будущего Вселенной.
А как же протоны и нейтроны, составляющие ядра атомов? Насколько устойчивы они? Казалось бы, коль скоро некоторые атомы оказываются полностью устойчивыми, а их ядра состоят из протонов и нейтронов, последние, выходит, тоже должны быть устойчивы. Но если взять отдельный нейтрон и предоставить его самому себе, то примерно через 15 минут он исчезнет.