Читаем Как появилась Вселенная? Большие и маленькие вопросы о космосе полностью

А теперь давайте вихрем пронесёмся по некоторым из идей, которые физики выдвинули в своих поисках «теории всего».[63] Это не будет исчерпывающим перечнем объяснений – скорее дегустацией, итоговой сводкой концепций, оказавших влияние на общественное сознание.

Важно, однако, помнить, что не все эти идеи независимы и что математические приёмы, использованные в них, могут оказаться взаимосвязанными и пересекающимися.

Суперсимметрия

Мы уже говорили о том, как физики любят симметрию. Она придаёт красоту уравнениям, лежит в основе законов сохранения, проясняет общую картину Вселенной. Оказывается, существует особая симметрия, лежащая в основе стандартной модели физики частиц: шесть видов кварков сопряжены с шестью видами лептонов, каждый из которых представлен парами частиц в порядке увеличения массы[64]. Физики привыкли описывать их свойства в математических терминах теории групп, которая охватывает такие виды симметрии.

Некоторые физики задались вопросом, не можем ли мы расширить стандартную модель, накладывая на неё дополнительную симметрию, в результате чего в ней появятся добавочные частицы. При этих условиях у электрона будет суперсимметричный двойник, сэлектрон

, а у каждого кварка – скварк. Суперсимметричные партнёры есть и у других частиц: например, у W- и Z-бозонов они называются ви́но и зи́но.
Где-то в этой мешанине частиц, возможно, скрывается и гравитон, частица, ответственная за перенос силы гравитации.

Эта теория математически элегантна, она связывает висящие концы, устраняет нестыковки стандартной модели – и, тем не менее, она неверна. Доказательств существования сэлектронов и скварков не обнаружено: эксперименты на Большом Адронном Коллайдере CERN, крупнейшей в истории научной установке, построенной для тестирования границ применимости стандартной модели, не дали никаких намёков на их реальность. Физики, отчаянно пытающиеся спасти эту теорию, предположили, что суперсимметричные частицы настолько массивны, что их трудно получить при энергиях, обеспечиваемых Коллайдером. Но чтобы оправдать это допущение, приходится отказаться от некоторых лежащих в основе модели видов симметрии. Для теории, которая предполагается суперсимметричной, это большой удар. И хоть ещё есть те, кто корпит над изобретением математических приёмов, которые заставили бы суперсимметрию работать, многие убеждены, что этот путь не ведёт к свету.

Теория струн

Теория струн пытается объединить гравитацию и остальные силы, спускаясь на самый нижний, фундаментальный уровень строения материи. В картине мира на этом уровне всё сделано из одних и тех же первоэлементов – крохотных колеблющихся струн. Из струн состоят электроны и кварки; колебания струн рассказывают вам о свойствах, определяющих тот или иной объект. И, хоть это может показаться сумасшедшей фантазией, но у этих вибрирующих струн есть математические свойства, очень заманчивые для физиков: они делают струны очень похожими на частицы, которые мы наблюдаем.

Эта теория органически описывает силу гравитации: гравитон оказывается просто одной из колеблющихся струн. Вся картина выглядит так просто! Всё, абсолютно всё на основном уровне состоит ровно из одних и тех же элементов. Но, чтобы теория струн заработала, требуется крайне запутанная математика. Одна из самых затруднительных её деталей заключается в том, что для обеспечения колебаний струн нужны дополнительные измерения пространства – и не одно, не два и не три. В некоторых версиях теории струн у Вселенной должно быть 26 измерений.

«Где же все эти измерения?» – кричат критики. Но специалисты по струнам быстро придумали отговорку, которую назвали компактификацией. Любое нежелательное измерение, которого мы в обычных обстоятельствах не наблюдаем, аккуратно свёрнуто или скатано в комочек, чтобы не доставлять лишних хлопот. Струнные теоретики упорно развивают математический аппарат своей теории. Оказывается, однако, что предполагаемый размер струн настолько мал, что нет никакой надежды добраться до них даже при помощи Большого Адронного Коллайдера. Чтобы экспериментально протестировать существование струн, потребовался бы коллайдер размером с Млечный Путь! Построить такую установку пока, видимо, не удастся, и разработчикам теории струн остаётся лишь продолжать свои математические игры. В отсутствие каких-либо экспериментальных доказательств некоторые противники теории струн договорились до того, что даже не считают её настоящей наукой!

M-браны

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Космос. Прошлое, настоящее, будущее
Космос. Прошлое, настоящее, будущее

«Земля – колыбель человечества, но нельзя вечно жить в колыбели», – сказал когда-то К.Э. Циолковский. И сегодня достаточно оглянуться назад, чтобы понять, как он был прав! Полет Гагарина, выход в космос Алексея Леонова, высадка на Луну, запуски спутников и космических станций – хроника космической эры живет в памяти ее свидетелей. Много лет журнал «Наука и жизнь» рассказывал своим читателям о достижениях космонавтики, астрономии и астрофизики. О звездных событиях на ночном небе и в лабораториях ученых можно было узнать, листая его страницы. Сегодня авторы осмысляют почти столетний опыт этого космического путешествия. И знатоки космоса, и те, кто только его открывают, найдут в этой книге много интересного!

Антон Иванович Первушин , Владимир Георгиевич Сурдин , Ефрем Павлович Левитан , Николай Владимирович Мамуна

Астрономия и Космос