Читаем Кантор. Бесконечность в математике. полностью

Чтобы понять разницу между ними, представим себе человека, который записывает все натуральные числа (числа, которые получаются путем прибавления 1, начиная с 0, то есть 0, 1, 2, 3, 4,...). Он начинает писать, в какой-то момент доходит до 100, потом до 1000, наконец до 10000. Работа, за которую он взялся, не закончится никогда, потому что когда он дойдет до 100000, ему надо будет продолжить со 100001, когда дойдет до 1000000 — с 1000001 и так далее. Он никогда не доберется до последнего натурального числа, просто потому что его не существует, эти числа никогда не закончатся.


Я против использования бесконечных величин как чего-либо законченного, это использование недопустимо в математике.

Карл Фридрих Гаусс, письмо от 1831 года


Писец поймет, что всей его жизни не хватит, чтобы завершить этот труд, и возьмет ученика, чтобы тот продолжил записывать числа после него. Этот второй писец, в свою очередь, возьмет еще одного ученика и так далее.

Будет ли список чисел, составленный всеми этими писцами, бесконечным? Ответ «да, будет, но только в потенции». Список чисел не является статичной группой, он постоянно растет, и этот рост никогда не закончится. На определенный момент времени — не важно, насколько далеко в будущем, — список будет конечным, но продолжит расти без ограничений.

Таким образом, потенциальная бесконечность — это бесконечность списка, который конечен на каждый момент времени, но может расти безгранично. В этом случае бесконечность приобретает негативный оттенок — это свойство, которое делает невозможным завершение работы.

Теперь возьмем группу, состоящую из всех натуральных чисел, абсолютно всех без исключения (вне зависимости от того, записаны они или нет). Разумеется, список будет бесконечным, только в таком случае мы имеем дело со статичной, завершенной бесконечностью. В эту группу входят все числа, к ней больше ничего не надо добавлять. Это и есть актуальная бесконечность.

Перенесем это понятие на такие величины, как вес, объем или длина. Например, если нарисовать отрезок (прямую, соединяющую точку А с точкой В), его длина, разумеется, будет конечной. Но геометрия говорит нам, что продолжать его можно сколько угодно. И если мы предположим, что это продолжение будет бесконечным, то получим линию с потенциально бесконечной длиной. Она всегда конечна, но способна бесконечно возрастать (см. рисунок 1).

Прямые, которые рассматриваются в современной геометрии, тем не менее имеют длину, считающуюся актуально бесконечной, и они тянутся непрерывно без начала и конца. Заметим, что такую линию невозможно изобразить.

Интересно, что все группы или величины, связанные с природными явлениями, никогда не являются актуально бесконечными, напротив, большинство из них конечны, и лишь очень малая часть — бесконечны, но только в потенции. Так, согласно принятым на сегодняшний день физическим теориям материя не является бесконечно делимой. Каждый атом состоит из определенного количества элементарных неделимых частиц. Возможно даже, что ни время, ни пространство не делимы бесконечно.

С другой стороны, космологи утверждают, что объем и диаметр Вселенной вполне могут быть потенциально бесконечными (диаметр Вселенной — это наибольшее расстояние, которое можно измерить, между двумя ее точками).


Число песчинок, содержащихся в шаре, равном миру, меньше тысячи единиц чисел «седьмых» [это единица с 51 нулем, огромное, но конечное число].

Архимед, «Псаммит»


Если верно, что Вселенная будет продолжать расширяться неопределенное количество времени, то и ее возраст в секундах будет потенциально бесконечен. Продолжая пример с писцами, представим, что они записывают по числу на каждую секунду, прошедшую с момента Большого взрыва. Список запротоколированных секунд постоянно возрастал бы, оставаясь при этом конечным.

Резюмируя, скажем, что время, материя и пространство были бы конечны или, максимум, бесконечны в потенции. Поэтому неудивительно, что в IV веке до н.э. Аристотель утверждал, будто актуальной бесконечности не существует.

РИС.1


БЕСКОНЕЧНОСТЬ ПО АРИСТОТЕЛЮ

Аристотель первым стал исследовать различие между «потенциальным бытием» и «актуальным». Можно сказать, что ребенок — это потенциальный взрослый, а глыба мрамора — потенциальная скульптура. Когда ребенок вырастает, он становится «актуальным» взрослым; скульптор превращает мрамор в актуальную скульптуру. «Звание потенциального мудреца равно дается и тому, кто ничего не изучает», — утверждает Аристотель в книге IX своей «Метафизики», видимо с долей иронии. В том же труде он говорит о бесконечности: 

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука
История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука