Читаем Капля полностью

В мемориальной статье Эйнштейн рассказал еще об одной идее Кельвина, имеющей прямое отношение к кап­ле. Кельвин заинтересовался следующим вопросом: как зависит давление пара жидкости вблизи поверхности от степени ее искривленности? Если рассуждать предметно, то речь идет о том, насколько отличается давление пара вблизи изогнутой поверхности водяной капли от давления пара вблизи плоской поверхности воды, налитой в широ­кое блюдце. В поисках ответа па этот вопрос Кельвин рассуждал так. Допустим, что в сосуд с жидкостью по­гружена тонкая трубка, внутренний радиус которой R . Если жидкость не смачивает материал, из которого сдела­на трубка, то ее уровень в трубке расположится ниже, чем в широком сосуде, в который налита жидкость. Произой­дет это по причине очевидной: в связи с тем что жидкость не смачивает стенок трубки, поверхность жидкости в ней будет выпуклой, полусферической, именно поэтому к жид­кости будет приложено давление, направленное внутрь, то самое лапласовское давление, с которым мы уже встре­чались, обсуждая опыт Плато. Под влиянием этого давле­ний уровень жидкости в трубке опустится ровно настолько, чтобы давление из- sa разности уровней жидкости в труб­ке и вне ее в точности равнялось лапласовскому. Его ве личину мы знаем: Р л = 2 / R Разность уровней h

обусловит  давление
Р = gh . Буквами обозначены следующие ве­личины: — поверхностное натяжение жидкости, — ее плотность, g — ускорение силы тяжести. Приравняв два эти давления, мы убедимся, что разница уровней h = 2/ gR
.

Таков результат первого этапа рассуждений Кельвина.

 

К расчету влияния кривизны поверхности жидкости на дав­ление пара над ней


Второй этап — естественное продолжение первого. Над всей поверхностью жидкости — и той, которая в трубке, и той, которая в широком со­суде,— имеется пар этой жид­кости, однако не везде дав­ление, оказываемое им на жидкость, одинаково: несколько большим оно будет над по­верхностью жидкости в труб­ке, так как слой пара над ней толще на величину h . Очевид­но, дополнительное давление этого слоя равно Р = 0

gh, где
0 — плотность газа, которая много меньше плот­ности жидкости. Величину h мы знаем — она была найдена на первом этапе рассужде­ний — и, следовательно, можем определить величину Р. Она очень важна, и поэтому формулу, которая определяет эту величину, мы вынесем на отдельную строку:

 

По поводу этой формулы Эйнштейн заметил, что она действительна «независимо от того, какими причинами обусловлено возникновение кривизны поверхности».

Можно понять восхищение, испытанное Эйнштейном, когда он ознакомился с логикой рассуждений и формулой Кельвина. Ведь, казалось бы, Кельвин обсуждал совсем частный пример: широкий сосуд, в нем жидкость, в жид­кости капилляр и т. д. А пришел к закону природы огром­ной важности и выразил его формулой, в которой ничего не содержится от того частного примера, который обсуж­дался. Разве что только R — радиус тонкой трубочки. Но ведь трубочка, как оказалось, нужна была только для

того, чтобы получить участок изогнутой поверхности, ограничивающей жидкость.

Вспомним о капле — она вся ограничена изогнутой по­верхностью, и значит, давление пара вблизи нее будет повышено на величину, определяемую формулой Кельви­на: чем меньше радиус капли, тем большее давление пара над ней. В этом легко убедиться с помощью многих опытов — далее мы с ними еще встретимся, а здесь, вместе с Эйн­штейном, восхитимся талантом Кельвина — его проница­тельным умом и великолепной логикой.


Капля пустоты



Много лет подряд вместе с моим покойным учителем Бори­сом Яковлевичем Пинесом мы занимались изучением по­ристых кристаллических тел. Так случилось, что я ни разу не спросил, как у него возникло представление о капле пустоты — поре в кристалле. А сейчас, к сожа­лению, спросить уже некого и остается лишь стро­ить догадки, сопоставляя факты и отрывки случайных раз­говоров.

Образ капли пустоты прочно вошел в физику твердого тела, о нем вспоминают всякий раз, когда надо осмыс­лить поведение различных дефектов в кристалле. И я расскажу о том, как этот образ возник. На примере рож­дения образа капли пустоты можно проследить, как вя­жется логическое кружево мысли ученого, где сосущест­вуют и конкурируют фантазия и строгая формальная ло­гика.

Перейти на страницу:

Похожие книги

Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг