Читаем Капля полностью

Можно рассказать об этом по-другому. Выпуклая по­верхность капли создает давление, которое прижимает ее к плоскости. Это так называемое капиллярное (лапласовское) давление — мы уже с ним встречались. Участок же поверхности капли, который граничит с твердой под­ложкой, такого давления не создает: оно должно быть пропорциональным 1/ R , а радиус кривизны плоского участка

поверхности капли равен бесконечности, и, значит, давле­ние равно нулю. К одному участку поверхности давление приложено, к другому — не приложено, а это неудобно. Капля, подвешенная в невесомости, таких неудобств не испытывает.

Два разных рассказа об одном и том же явлении можно проиллюстрировать двумя опытами. Опыт первый иллю­стрирует первый рассказ, опыт второй — второй.

Опыт первый. На полированной поверхности стеклян­ной пластинки, сухой и чистой, располагается тонкий лепесток полимерной пленки. Хорошо, если его толщина будет не более 5 микрон. На поверхность лепестка надо посадить каплю воды и наблюдать за происходящим. Кап­ля начнет изгибать пленку, стремясь завернуться в нее. Отчетливо это иллюстрирует кинограмма. Работает при этом та сила, которая на рисунке обозначена жирной стрелкой. Если бы полимерная пленка абсолютно подчи­нялась воле капли, произошло бы следующее: капля при­няла бы форму сферы, равномерно покрыв себя слоем поли­мерной пленки. В действительности же, так как плоская пленка не может приобрести сферическую форму, капле не удается полностью в нее завернуться, но все же устра­ивается она при этом более удобно, чем на плоской поверх­ности.

Стремление капли завернуться в пленку мы объяснили, сославшись на силу, изображенную жирной стрелкой. Можно и в иных словах и понятиях описать процесс, за­ печатленный на кинограмме, смонтированной из кадров фильма, в котором заснята кинетика заворачивания водя­ной капли в пленку. Из рисунка следует, что 21 + 10•  cos = а20 . Так как

cos >= 0 , то 21 < 20 и, следова­тельно, заведомо меньше, чем сумма
10
+ 20 . Это оз­начает, что выгодно вместо двух свободных поверхностей капли и пленки создать одну поверхность, вдоль которой капля и пленка соприкасаются. А для этого капле следует в пленку завернуться, что она и делает.

 

Последовательность моментов ваворачивания водяной капли в лепесток из полимерной пленки


Внимательно присмотритесь к каплям, которые после дождя остались на поверхности тонких листиков, и вы увидите, что вблизи капель листики изогнуты значитель­но больше, чем это могло бы произойти лишь под влиянием их веса. Капли явно гото­вили себе «постель» поудоб­нее.

Опыт второй был постав­лен чешскими физиками. На полированную поверхность массивного кристалла железа наносилась капля расплав­ленного свинца. Железо было раскалено до температуры более 1000° С, и поэтому свин­цовая капля оставалась жид­кой. Кристалл железа — не полимерная пленка, и изо­гнуть его вокруг себя капля не может. Поэтому поступает она иным способом: выкапы­вает под собой ямку такой формы, чтобы вдоль контуров капли все три силы скомпенсировались так, как показано на рисунке. Эта «удобная» ям­ка должна иметь такую фор-

му, чтобы давление, обусловленное изогнутой поверхностью жидкий свинец — воздух, было в точности равно тому давлению, которое обусловлено искривленностью поверх­ности жидкий свинец — твердое железо, т. е. дна ямки.

Равенство двух этих давлений означает, что 10/

R
10= 12/R12   . Итак, давления равны, а кривизна двух поверхностей различна, потому что различны соответствующие поверхностные энер­гии.

 

Взаимное расположение сил, действующих на контур капли, которая «удобно устроилась» на твердой поверхности


Выкопав под собой ямку, капля как бы перенеслась в невесомость — как и в невесомости, капиллярное давление оказалось одинаковым вдоль всей поверхности, огра­ничивающей каплю.

Естественно возникает вопрос: каким образом капля вы­копала ямку? Ответим на него. Вначале, когда капля была расположена на плоской поверхности железа, она прижи­малась к нему тем давлением, которое обусловлено искрив­ленностью поверхности свинец — воздух. Под влиянием этого давления железо из-под свинцовой капли перемещалось в области вокруг нее. Перемещалось в процессе диф­фузии поатомно, атом за атомом — опыт ставился при высокой температуре, когда диффузия в железе происхо­дит достаточно активно.

Надо подчеркнуть, что в описанном опыте капиллярное давление, которое обусловливает перемещение железа из-под свинцовой капли, существенно больше давления, обусловленного ее весом, так как капля свинца была очень «маленькая» в том смысле, в каком мы об этом гово­рили в очерке об опыте Плато.

Перейти на страницу:

Похожие книги

Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг