Читаем Капля полностью

Как видите, стоков энергии много, и, очевидно, все «работающие», но скорость их действия и «поглощатель­ная способность», конечно же, различны. Совершенно яс­но, что капля не подпрыгнет, если изменение ее формы будет происходить медленно. В этом случае принципиаль­но возможный расход энергии на скачок не произойдет. И на борьбу с сопротивлением жидкости изменению ее формы тоже будет расходоваться мало энергии, потому что этот расход, как оказывается, тем больше, чем быстрее должно произойти изменение формы. При медленной сфероидизации капли выделяющаяся энергия была бы израсходована в основном на ее нагрев и нагрев окружаю­щего пространства. Увидеть, как капля подпрыгнет, мож­но лишь при условии, что преобразование ее формы будет происходить быстро. Если, присев на корточки, мы будем медленно распрямляться, прыжок не получится: чтобы подпрыгнуть, надо, быстро распрямляясь, оттолк­нуться от земли. Но что значит «быстро» применительно к капле, которая изменяет свою форму? Капле, чтобы под­прыгнуть, надо побороть силу тяжести, препятствующую прыжку.


На каплю в момент ее прыжка действуют две силы.

 

Итак, возникает задача, которую можно сформули­ровать следующим образом. Допустим, что вся энергия, которая выделяется в процессе сфероидизации капли, должна быть израсходована только на ее подпрыгивание. Пусть другие стоки энергии каким-то образом запрещены. Спрашивается, при какой длительности процесса преоб­разования формы капли в сферическую капля оторвется от твердой пластинки, на которой она лежит? Решить такую задачу просто. Это могут сделать восьмиклассники в на­чале учебного года, узнав, что кинетическая энергия тела равна половине произведения его массы на квадрат скоро-

 

При такой оценке времени кажется, что надежда на­блюдать подпрыгивающую каплю становится иллюзор­ной. Но, если каплю на подложке перевести в состояние невесомости или близкое к нему, произойдет то, к чему мы стремимся: потеряв вес, капля приобретает сферичес­кую форму и на нее перестает действовать сила тяжести, мешающая оторваться от пластинки, на которой она лежит. В состоянии невесомости величина g,

которая стоит в зна менателе последней формулы, обращается в нуль, а это значит, что т становится рав­ным бесконечности, и капля подскочит даже при сколь угодно медленном преобразо­вании ее формы. При малей­шем изменении формы она оторвется от пластинки и с некоторой скоростью начнет двигаться от нее. Ситуация совершенно аналогична той, в которую попадают космо­навты во время полета, когда им приходится специально заботиться, чтобы случайное движение не вынудило их покинуть рабочее место.

 

Подпрыгнувшая в невесомости капля, колеблясь, свободно летит вверх



Вот теперь можно расска­зать о великолепном экспери­менте, который в 1970 г. по­ставили советские физики И. М. Кирко, Е. П. Добычин и В. И. Попов. Их экспери­мент состоял в следующем. Тяжелый контейнер, в кото­ром располагались прозрач­ный сосуд с двадцатиграм­мовой каплей ртути, залитой раствором соляной кислоты, и автоматически работающая кинокамера, сбрасывался с высоты 20 м. Во время свобод­ного полета, длившегося 2 сек., все содержимое контей­нера было практически в со­стоянии невесомости. Кинока­мера зафиксировала происхо­дящее в полете: ртутная ле­пешка, превращаясь в сферу,  подпрыгнула и полетела прочь от дна прозрачной кюветы со скоростью 8,7 см/сек. Это главное наблюдение, сделанное камерой. Проверим, как оно согласуется с величиной энер­гии, которая должна выделиться при сфероидизации кап­ли. Именно для этой проверки в начале очерка была наз­вана энергия, которая выделяется при сфероидизации ртутной капли весом 20 г. Получив скорость 8,7 см/сек., она унесет с собой энергию Wk = m 2 /2= 752 эрг,

т. е. большую часть всей выделяющейся энергии. Не ис­пользованными при прыжке остались 1060 — 752 =  308 эрг. Как показала кинокамера, основная часть этой энергии была израсходована на преодоление сопротивления вязкой ртути ее деформированию — движущаяся капля пульсировала, колебалась, и на это расходовалась энергия.

При опытах обнаружился еще один сток энергии — на этот раз энергии движущейся капли. Когда капля под­ходила к границе соляная кислота — воздух, грани­ца изгибалась и отражала от себя каплю, заставляя ее двигаться в обратном направлении. Часть энергии капли расходовалась на изгиб границы. Ртутная капля, подобно мячику, металась между дном кюветы и границей между соляной кислотой и воздухом. Именно поэтому свою статью, опубликованную в «Докладах АН СССР» (1970, т. 192, № 2), экспериментаторы назвали не совсем акаде­мично, но точно и выразительно: «Явление капиллярной игры в мяч в условиях невесомости».

Перейти на страницу:

Похожие книги

Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг