Читаем Кентерберийские головоломки полностью

117. Доски с нечетным числом клеток.Рассмотрим доски, которые содержат нечетное число клеток. Начнем с доски 3X3. Ее можно разрезать на равные части, лишь удалив центральную клетку. Вполне очевидно, что это можно сделать только одним способом, как показано в случае а.Части Аи Вимеют одинаковые размеры и форму, и при любом другом способе разрезания получатся такие же части, а, как мы знаем, в подобном случае способы не считаются различными.



Я предлагаю читателю разрезать на две части одинакового размера и формы максимальным числом различных способов доску 5x5 (случай 6). На рисунке приведен один из таких способов. Сколько всего существует различных способов? Часть, которая при перевертывании другой стороной кверху принимает ту же форму, что и другая часть, не считается обладающей отличной от нее формой.


118. Задача Великого ламы.Жил некогда Великий лама, у которого была шахматная доска из чистого золота, прекрасно выполненная и, разумеется, огромной ценности. Каждый год в Лхасе среди лам проводился турнир, и тому из них, кому удавалось выиграть у Великого ламы, воздавались большие почести, его имя гравировалось на оборотной стороне доски, а в клетку, где был поставлен мат, вправляли драгоценный камень. После четырех поражений Великий лама умер (возможно, от огорчения).



Новый Великий лама был неважным игроком и предпочитал другие виды невинных развлечений: он больше любил рубить людям головы. Шахматы он считал загнивающей игрой, которая не способствует совершенствованию разума или морали, и полностью отменил турниры. Затем он послал за четырьмя ламами, имевшими дерзость играть лучше Великого ламы, и сказал им:

– Ничтожные варвары, именующие себя ламами! Знаете ли вы меру своей дерзости? Вы осмелились претендовать на то, что в чем-то превосходите моего предшественника?! Возьмите эту доску и прежде, чем рассвет займется над камерой пыток, разрежьте ее на 4 равные части одинаковой формы, чтобы каждая содержала по шестнадцать целых клеток и по одному драгоценному камню! Если вы в сем деле не преуспеете, то, к вашей же печали, мы придумаем другое испытание. Идите!

Четверо лам преуспели в этом на первый взгляд безнадежном деле. Можете ли вы показать, как следует разрезать доску на 4 равные части одинаковой формы, содержащие по драгоценному камню, если разрезы проводить исключительно по границам клеток?


119. Окно аббата.Однажды аббат монастыря святого Эдмондсбери от излишней для его головы «набожности» так занемог, что не в силах был подняться с постели. Он лежал без сна, и голова его беспокойно металась по подушке, отчего внимательные монахи заключили, что их настоятеля беспокоит какая-то навязчивая мысль. Однако никто не решился спросить его, в чем дело, ибо аббат отличался суровым характером и не потерпел бы никаких расспросов. Внезапно он позвал отца Джона, и вскоре этот почтенный монах предстал перед ложем.

– Отец Джон, – сказал аббат, – знаешь ли ты, что я пришел в этот грешный мир в сочельник?

Монах кивнул утвердительно.

– А не говорил ли я тебе, что, родившись в сочельник, я не люблю ничего нечетного? [22]Смотри! – Аббат указал на большое окно трапезной, которое вы видите на рисунке. Монах взглянул на него и задумался.



– Заметил ли ты, что шестьдесят четыре просвета расположены так, что их число вдоль вертикалей и горизонталей четно; но вдоль всех диагоналей,

за исключением четырнадцати, их число нечетно? Почему так происходит?

– По правде говоря, отец мой, это лежит в самой природе вещей и не может быть изменено.

– Нет, это следуетизменить. Я повелеваю тебе сегодня же закрыть некоторые из просветов так, чтобы число просветов вдоль каждой прямой оказалось четным. Смотри, чтобы это было сделано без промедления, иначе погреба будут заперты на целый месяц и другие не менее тяжкие кары падут на твою голову.

Отец Джон, ломая голову, едва не лишился разума, но, посоветовавшись наконец с одним монахом, искушенным в тайных науках, сумел все же удовлетворить прихоть аббата. Какие просветы были заделаны, чтобы число оставшихся просветов вдоль каждой вертикали, горизонтали и диагонали оказалось четным, а число заделанных просветов при этом было минимальным?


120. Китайская шахматная доска.На какое максимальное число различных частей можно разрезать шахматную доску (все разрезы проводятся только вдоль линий) так, чтобы при этом никакие две части не оказались полностью одинаковыми? Помните, что части, отличающиеся расположением черных и белых клеток, считаются различными. Так, единственная белая клетка отличается от единственной черной клетки; ряд из трех клеток, две из которых белые, а одна черная, отличается от такого же ряда с двумя черными и одной белой клетками и т. д. Если две части нельзя расположить на столе так, чтобы они выглядели совершенно одинаковыми, то они считаются различными; а поскольку на обратной стороне доски рисунок не нанесен, то части нельзя переворачивать другой стороной кверху.


Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика