Читаем Хаос. Как беспорядок меняет нашу жизнь к лучшему полностью

Схожим образом можно описать абсолютно другую проблему выбора оптимального набора инвестиций — к примеру, когда мы откладываем деньги на пенсию. В 1952 году молодой профессор финансов Гарри Марковиц работал над сложным методом выбора оптимального финансового портфеля, а также минимизации любого ожидаемого возврата или максимизации ожидаемого возврата при любом заданном риске. Базовая идея проста: если вы покупаете акции в компании, производящей зонтики, и у производителя солнечных очков, ваши дела будут идти хорошо при любой погоде. Детали, конечно, более продуманны — настолько, что позволили Марковицу получить Нобелевскую премию по экономике.

Хотя о последнем есть забавная история: вскоре после публикации своей теории он начал работу над пенсионным сберегательным планом и должен был выбрать оптимальный набор инвестиций для собственного выхода на пенсию. Это было идеальной возможностью воплотить блестящую теорию на практике. Но он отверг эту возможность и вложил половину своих денег в акции, а половину — в облигации. Эту историю часто называют идеальной иллюстрацией идеи о том, что экономическую теорию до конца сложно понять даже тем, кто ее создал.

И все же тут есть ирония внутри иронии.

Марковиц-инвестор был все время прав. Ошибался Марковиц-теоретик с Нобелевской премией по экономике. Причина была в том, что теория Марковица идеальна в том случае, когда предоставляет бесконечные объемы данных, но она может не оправдать ожиданий в ситуации с более ограниченной информацией.

Рассмотрим, например, акции двух нефтяных компаний. Теория Марковица предполагает, что мы понимаем, каким образом курс этих акций имеет тенденцию изменяться по отношению друг к другу, — тогда она предложит эффективный набор акций обеих компаний. Но как именно работает эта зависимость? Оглядываясь назад, мы видим периоды, когда курсы движутся синхронно: цены на нефть растут — курс акций растет; цены на нефть падают — и курс акций с ними. Но есть ситуации, например с разливом нефти, как при катастрофе на «Глубоководном горизонте» в 2010 году, когда акции причастной компании упадут, а конкуренты будут в порядке. Хотя история и является своего рода руководством, но она не идеальна — особенно если оценивать вероятность уникальных событий (по определению в архивах вы найдете немного упоминаний о них — возможно, вообще ни одного).

Недавнее исследование показывает, что при наличии ограниченных данных железное правило Марковица — разделить активы в равном количестве между такими категориями, как акции, облигации и собственность, — превосходит Нобелевскую теорию Марковица. Что мы подразумеваем под «ограниченными данными»? Все, что включается в отрезок меньше 500 лет, вероятно, ограниченно настолько, чтобы решить исход дела в пользу железного правила[232]

.

Вновь мы видим параллель с предписаниями Базеля II. Как и нобелевская теория Марковица, они требовали множество данных, чтобы быть устойчивыми. Эти данные отсутствовали. Модели рисков, которые использовали банки в начале 2000-х, — те, которые Базель II поощрял к использованию, — могли ссылаться только на информацию пятилетней давности, которая при этом включала сотни тысяч параметров. Невероятно сложные статистические структуры были построены на самом зыбком фундаменте.

Такая проблема известна как чрезмерно близкая подгонка — она возникает, когда детализированный статистический анализ слепо повторяет исторические данные. Представьте диаграмму разброса с прямой или сглаженной кривой, проходящей сквозь облако точек, чтобы выявить эту тенденцию. Прямая с чрезмерно близкой подгонкой выглядит, скорее, как головоломка типа «соедини точки», где определяется закономерность сердечных приступов или лавин, которой на самом деле нет. Когда поступают новые данные — новые точки, они с меньшей вероятностью возникнут рядом с изгибающейся кривой. Сложные правила похожи на прямую с чрезмерно близкой подгонкой: разработаны задним числом, но с низкой способностью прогнозирования. Более простое правило — нарисованная прямая или сглаженная кривая — тоже не подходит для прежним данных, но зачастую работает лучше, когда поступают новые.

Создание более сложных целей не может быть решением. Сложный показатель с такой же вероятностью будет обманут, и простое железное правило зачастую представляет точное руководство к пониманию происходящего.

В таком случае проблема возвращается к обману. Лавины и сердечные приступы не могут обмануть систему, которая распознает их, — они могут быть опасны, но они не врут. Но что произойдет, если регуляторы Базеля просто сделают вывод из анализа Энди Халдана, что они должны порвать сотни страниц правил и заменить их на одно — об ограничении суммы, которую банк может брать взаймы по отношению к капиталу? Мы бы вернулись к записи на прием Тони Блэра. Так или иначе банки найдут способ обойти простое правило левериджа.

Перейти на страницу:

Похожие книги

Психология убеждения. 50 доказанных способов быть убедительным
Психология убеждения. 50 доказанных способов быть убедительным

Авторы рассматривают психологическую основу успешных стратегий социального влияния, используя при этом только научные доказательства. Именно научные методы, позволяют, изменив немногое в нашем общении, получить поразительные результаты в области убеждения.Прочитав эту книгу, вы сможете лучше понять процессы, лежащие в основе общения и взаимодействия. Вы увидите, как можно изменять поведение людей или их отношение к чему-либо, научитесь честно, этично и правильно выстраивать общение с противоположной стороной и партнерами.Для всех, кому важно быть убедительным: на работе и дома, с близкими и незнакомыми людьми, при устном обращении и на письме.

Ноа Гольдштейн , Роберт Бено Чалдини , Роберт Б. Чалдини , Стив Дж. Мартин , Стив Мартин

Деловая литература / Психология / Маркетинг, PR, реклама / Образование и наука / Финансы и бизнес