Хорошую службу молодым ученым сослужило их умение обращаться со всякого рода «железками». Шоу с детства только и делал, что копался во всяких устройствах[322]
. Паккард еще мальчишкой ремонтировал в Сильвер-Сити телевизоры. Крачфилд принадлежал к первому поколению математиков, которым логика компьютерных процессоров казалась естественным языком. Само здание физического факультета, располагавшееся в тени секвой, ничем не отличалось от прочих строений такого рода – те же бетонные полы и вечно нуждающиеся в покраске стены, – однако в комнате, где работали адепты хаоса, царила особая атмосфера: там громоздились стопки бумаг, на стенах фотографии таитянок перемежались с изображениями странных аттракторов. Почти каждый час, но чаще ночью, нежели утром, случайный посетитель мог наблюдать, как члены группы заново устанавливают схемы, отсоединяют шнуры от наборной панели, спорят о самосознании и эволюции, регулируют экран осциллографа или просто с упоением смотрят, как сверкающая зеленая точка, чья орбита мерцает и подрагивает, словно живое существо, вычерчивает бесконечную кривую.«На самом деле всех нас привлекло одно и то же: мысль, что можно наблюдать детерминизм, но в какой-то степени нереальный, – признавался Фармер. – Идея о том, что классические детерминистские системы, которые мы изучали, способны генерировать случайность, казалась интригующей, и мы двигались дальше, чтобы понять, что дает ход этому явлению.
Нельзя по достоинству оценить такое открытие, если в течение шести или семи лет человеку не вбивали в голову все стандартные курсы физики. Нас учили, что существуют классические системы, где абсолютно все определяется начальными условиями, и есть системы квантовой механики, где явления тоже предопределены, но необходимо учитывать, что возможности по сбору исходных данных о системе ограниченны. Что же касается понятия „нелинейный“, то его мы встречали лишь в конце учебника. Так студент-физик изучал курс математики, где самая последняя глава была посвящена нелинейным уравнениям. Обычно мы ее пропускали, а если и нет, то усваивали только одну рекомендацию: нужно свести эти нелинейные уравнения к линейным, чтобы получить приблизительные решения. Мы расписывались в собственной беспомощности.
Мы понятия не имели о том, что именно нелинейность реально меняет в модели. Уже сама идея, что уравнение может вести себя непредсказуемым образом, была вполне захватывающей. Мы задавались вопросом: что служит причиной такого случайного поведения? Ведь его не видно в уравнениях… Казалось, что-то появляется прямо из небытия!»
Крачфилд говорил: «Мы поняли, что перед нами лежит целая область физических знаний, которую нельзя втиснуть в привычные рамки. Почему нас этому не учили? Теперь нам представился шанс взглянуть на реальность прекрасного земного мира и попытаться хоть что-то понять».
Очарованные постигнутым, они обескуражили профессоров, взявшись за проблемы детерминизма, природу интеллекта, направления биологического развития.
«Нас объединило то, что мы все смотрели вдаль, – объяснял Паккард. – Мы были поражены, выяснив, что упорядоченные физические системы, затертые до дыр в курсе классической физики, порождают нечто таинственное, если слегка изменить параметры, нечто такое, к чему неприменим огромный аналитический аппарат.
Феномен хаоса мог быть открыт гораздо, гораздо раньше. Этого не случилось, потому что исследования динамики регулярного движения вели ученых по другому пути. Но если взглянуть повнимательнее, можно обнаружить и дорожку к хаосу[323]
.Проделанная работа укрепляла в следующей мысли: пусть физика и наблюдения ведут нас, а мы посмотрим, какие новые теории можно развить. В долгосрочной перспективе мы признали изучение сложных систем отправной точкой, от которой можно перейти к пониманию их по-настоящему сложной динамики». Фармер добавлял: «В философском плане обнаруженное ошеломило меня. Ведь это был действенный путь примирения свободы воли с детерминизмом. В самом деле: система является детерминистской, но мы не знаем, как она себя поведет в дальнейшем! В то же время я всегда ощущал, что важнейшие проблемы в мире связаны с законами организации жизни и разума. Но как можно их изучить? То, чем занимались биологи, казалось чересчур прикладным и специфичным. Химики, бесспорно, не работали над этой проблемой. Математики – тоже, равно как и физики. Однако я чувствовал, что вопрос о стихийной самоорганизации должен относиться именно к сфере физики. То, что мы увидели в своих экспериментах, являлось двумя сторонами одной медали. Порядок существовал, и он был такой, что в него постепенно вклинивалась доля случайности, а затем еще шаг – и появлялся хаос, скрывающий в себе свой особый порядок».