Шпигель был знаком с Лоренцем лично и, конечно, знал о хаосе еще с 1960-х годов. Предметом его научного интереса являлся поиск объяснения неупорядоченному поведению в моделях движения звезд, и он поддерживал контакты также с французскими математиками. В конце концов, будучи профессором Колумбийского университета и занимаясь астрономическими исследованиями, Шпигель сфокусировал свое внимание на явлении турбулентности в космосе – «космических аритмиях»[315]
. Он обладал удивительной способностью увлекать коллег новыми идеями, и к концу вечера идеей аттрактора загорелся и Бёрк, всегда воспринимавший новое с энтузиазмом. Бёрк сделал себе имя в научном мире, работая над одним из наиболее парадоксальных вопросов, привнесенных в науку Эйнштейном, – понятием о гравитационных волнах, распространяющихся по ткани пространства-времени. То была в высшей степени нелинейная система, проявляющая себя столь же непредсказуемым образом, как турбулентность в жидкости. Проблема казалась весьма абстрактной и теоретической, однако Бёрку нравилась и «приземленная» физика. Однажды он написал работу, посвященную оптике пивной кружки: ученый исследовал, насколько толстым можно сделать ее стекло, чтобы кружка все еще казалась наполненной до краев. Бёрк любил повторять, что он из тех ретроградов, которые считают физику реальностью. Прочитав в журналеВ эволюции вычислительных машин аналоговые компьютеры считались тупиковой ветвью. Такие устройства обычно не держали на физических факультетах, и в Санта-Крузе одно из них оказалось по чистой случайности. Первоначально здесь задумывали организовать инженерную школу, а когда планы изменились, выяснилось, что энергичный агент уже приобрел для нее кое-какое оборудование[316]
.Память цифровых компьютеров состоит из множества унитарных элементов-ячеек – в прошлом электронных ламп-диодов, – которые могут находиться в двух состояниях: диод либо проводит ток, что соответствует числу «единица», либо не проводит, что соответствует числу «ноль». Компьютер оперирует с этими нулями и единицами, позволяя получать ответы на заданные программистом вопросы. Его элементная база поддается той миниатюризации и акселерации технологий, что управляла компьютерной революцией. Выполненное однажды на цифровом компьютере могло быть выполнено вновь, точь-в-точь с тем же результатом, и в принципе воспроизведено на любом другом цифровом компьютере. Что касается аналоговых машин, то они – вещь неопределенная и неунифицированная. Составляющие их блоки – не ячейки типа диодов, как в цифровых компьютерах, а электронные схемы, подобные резисторам и конденсаторам, которые хорошо знакомы любому, кто когда-либо увлекался радиотехникой, как, например, Роберт Шоу. В Санта-Крузе стояла машина модели
Составляя различные комбинации соединений схем, программист имитирует системы дифференциальных уравнений таким образом, чтобы они хорошо решали инженерные задачи[317]
. Допустим, нам необходимо построить модель автомобильной подвески с рессорами и амортизаторами такой конструкции и массы, чтобы добиться наиболее плавного движения. Можно сделать так, чтобы колебания в аналоговом компьютере соответствовали колебаниям в реальной физической системе. Конденсатор заменяет рессору, катушки индуктивности олицетворяют массу, и так далее. Расчеты неточны – числовым выкладкам отводится второстепенная роль. Вместо этого мы имеем модель из металла и электронов, достаточно быструю и, самое главное, легко регулируемую. Простым поворотом рукояток мы можем подстраивать переменные, придавая рессоре дополнительную упругость или ослабляя трение. И за изменениями результатов можно наблюдать в реальном времени, поскольку кривые выводятся на экран осциллографа.