Читаем Хранители времени. Реконструкция истории Вселенной атом за атомом полностью

Рис. 6.2. Схематичное представление семи типов ядерного распада: альфа-распад, бета-распад, обратный бета-распад, захват электрона, гамма-распад, вынужденное деление и спонтанное деление. У тяжелых ядер отмечены их атомная масса, атомный номер и химический символ. У легких ядер, вовлеченных в бета-распад, подробно показаны числа протонов и нейтронов. Над каждой проиллюстрированной реакцией приведены уравнения распада


При спонтанном делении ядро никогда не распадается на равные части, однако может порождать самые разные элементы, которые располагаются ближе к середине Периодической таблицы. Кроме того, следует добавить, что некоторые нейтроны часто не могут найти себе приют ни в том ни в другом фрагменте, что приводит к последней из семи форм распада: вынужденному делению. Нейтроны нейтральны, поэтому без проблем проникают в атомное ядро, и когда они оказываются внутри тяжелого нестабильного ядра, может начаться хаос. В большинстве реакций деления, вызванного нейтронами, появляется два больших осколка и несколько нейтронов-скитальцев, хотя иногда, менее чем в 1 % случаев, создается три отдельных фрагмента.

Также реакцию деления может запустить фотон с достаточно высокой энергией, разорвав ядро на части, а еще она может начаться, когда в ядро ударяет частица с высокой энергией, отличная от нейтрона. Но наиболее эффективны именно относительно медленные нейтроны. Поскольку в ходе каждой реакции деления создается, как правило, не один, а несколько нейтронов, эти избыточные нейтроны способны, в свою очередь, запустить новые реакции деления, высвободив еще больше энергии и еще больше нейтронов. Благодаря этому реакция может стать самоподдерживающейся, и если мы возьмем ее под контроль, внимательно отслеживая число созданных нейтронов, то получим атомную электростанцию, способную генерировать электричество, причем объемы топлива при этом составят одну десятимиллионную от тех, какие предполагаются в процессах, подразумевающих химические реакции, – скажем, при сжигании угля, нефти или газа. Но если мы позволим этим реакциям умножаться без ограничений, тогда нас ждет взрыв атомной бомбы, подобной той, что стерла с лица земли Хиросиму.

Как мы уже говорили, ядро Урана при делении (238

U или 235U) в большинстве случаев разделяется на две неравные части. Изотопы с меньшей массой сосредоточиваются вокруг атомной массы со значением 95 в пределах от 80 до 110, в то время как часть с большей массой – вокруг массы со значением 135, в диапазоне от 125 до 155 (см. рис. 6.3). Поскольку эти два фрагмента возникают из материнского ядра, богатого нейтронами (например, у 238U соотношение нейтронов и протонов 146:92), у обоих дочерних изотопов оказывается очень много нейтронов и оба они располагаются выше долины стабильности (см. рис. 6.1). Таким образом, продукты реакции деления сами по себе оказываются радиоактивными и, как правило, претерпевают серию бета-распадов, чтобы приблизиться к долине стабильности. Стронций-90, о котором мы упоминали в главе 5, – это пример радиоактивного продукта деления. Некоторые из этих видов долговечны и создают те самые проблемы с радиоактивными отходами, которые становятся неотъемлемой частью производства ядерной энергии и о которых политикам так трудно рассуждать
2.

Другая форма превращения ядра противоположна делению, и именно благодаря ей возникли все элементы, за исключением первозданных Водорода и Гелия: это ядерный синтез. Беседу об этом процессе мы отложим до главы 16, где поговорим о создании самих элементов в ядрах массивных звезд.


Рис. 6.3. Есть много способов, при помощи которых реакция деления (вынужденного или спонтанного) может расщепить тяжелое ядро. Кривые отражают частоту, с которой при делении Урана-235 испускаются фрагменты с различной массой. Изотопы с меньшей массой приблизительно сосредоточены вокруг атомной массы со значением 95 в пределах от 80 до 110, в то время как часть с большей массой – вокруг массы со значением 135, в диапазоне от 125 до 155

Время жизни и полураспад


Перейти на страницу:

Похожие книги

Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное