Читаем Хранители времени. Реконструкция истории Вселенной атом за атомом полностью

Предположим, что в полдень, когда я запускаю часы, в моем распоряжении, на лабораторном столе, находятся 10 000 атомов радиоактивного изотопа. Если период полураспада этого изотопа составляет один час, то в 13:00 у меня останется примерно 5000. Вряд ли их будет точно 5000 – в конце концов, это случайный процесс, и точно так же вряд ли получится добиться выпадения ровно пятидесяти «орлов» при ста бросках монеты. Но их будет приблизительно 5000.

У этих 5000 ядер нет ни памяти, ни чувства времени, и они, безусловно, не знают, когда именно я начал за ними наблюдать. Поэтому вероятность распада каждого из них за час составляет 50:50, и это истинно для всех ядер данного изотопа. Таким образом, в 14:00 останется примерно 2500 – за этот час распадется примерно половина от тех 5000, которые оставались в 13:00. В 15:00 число сократится до 1250, а в 16:00 их будет всего 625.

Число атомов, оставшихся в то или иное время, распадается по экспоненте, как показывает кривая, изображенная на рис. 6.4. Все обстоит точно так же, как при броске монет. Вероятность выпадения одного «орла» составляет 50 %. Вероятность двух «орлов» кряду – 25 %, поскольку равноценны все четыре следующих возможности: «орел-орел» (ОО), «орел-решка» (ОР), «решка-орел» (РО) и «решка-решка» (РР), и только одна из них дает желаемый исход (два «орла»). Вероятность выпадения трех «орлов» кряду влечет восемь возможных исходов: ООО, ООР, ОРО, ОРР, РРР, РРО, РОР, РОО, и только один из этих восьми будет для нас успешен (три «орла» кряду). В теории вероятностей есть правило, согласно которому для независимых событий (таких, как подбрасывание монетки или радиоактивный распад) мы рассчитываем вероятность всех трех событий в совокупности (первого, И ТАКЖЕ второго, И ТАКЖЕ третьего), просто перемножая вероятности совершения каждого из событий. В этом простом случае, где каждая из вероятностей составляет 1/2 , вероятность получить n «орлов» кряду рассчитывается по формуле P(n) = ( 1/2 )n.

В том случае, когда речь идет о радиоактивных ядрах, действует та же самая логика. Просто представим, что каждое ядро в нашей пробе за период полураспада один раз бросает монетку. Тогда половина получит «решку» и распадется, а другая половина, у которой выпадет «орел», продолжит жить. По истечении очередного периода полураспада (еще один бросок) прекратит существование еще одна половина ядер и так далее. Таким образом, можно записать, что число ядер, оставшихся в какой-либо момент времени T, в сравнении с числом, которым мы располагали в самом начале эксперимента, когда T = 0, находится по формуле:

N(T) = N(T =

0) x ( 1/2 )T/t 1/2 ,

где t 1/2 – период полураспада изотопа. Если рассмотреть вышеупомянутый случай при T = 4 часа и t 1/2  = 1 час, то N(4 часа) = 10 000 x ( 1/2 )4/1 = 10 000/16 = 625. К полуночи T/t 1/2 составит 12/1, а ( 1/2 )12

= 1/4096, поэтому можно ожидать, что распад не коснется только 10 000/4096, или примерно 2–3 ядер; к 03:00, по всей вероятности, из первоначальной пробы не останется ни одного ядра.

Периоды полураспада у радиоактивных изотопов варьируются в огромных пределах, начиная от 0,0000000000000000000000023 секунды (2,3 x 10–23 с, или 23 йоктосекунды) у Водорода с шестью нейтронами (7H) до 2 200 000 000 000 000 000 000 000 лет (2,2 x 1024 лет, или 2,2 йоттагода – да, йоттагод – это очень долгий год) у Теллура-128. В общем, время жизни приблизительно коррелирует с тем, насколько далеко от границы стабильности располагается изотоп; например, такие изотопы, как Теллур-124, Теллур-125 и Теллур-126, очень уютно устроились в долине стабильности, а 128Te находится недалеко от нее, в то время как у Водорода стабильны лишь 1H и 2H, а 7

H – очень далеко от кривой.


Рис. 6.4. Экспоненциальный распад радиоактивного источника. Один период полураспада – это время, необходимое для того, чтобы произошел распад 50 % образца. В течение следующего периода полураспада распадется 50 % того, что осталось. Таким образом, на горизонтальной оси, представляющей время на графике с периодами полураспада, мы видим, что по истечении пяти периодов полураспада остается лишь 1/2 -> 1/4

-> 1/8 -> 1/16 -> 1/32 образца

Невозмутимые часы


Перейти на страницу:

Похожие книги

Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное