Предположим, что в полдень, когда я запускаю часы, в моем распоряжении, на лабораторном столе, находятся 10 000 атомов радиоактивного изотопа. Если период полураспада этого изотопа составляет один час, то в 13:00 у меня останется примерно 5000. Вряд ли их будет точно 5000 – в конце концов, это случайный процесс, и точно так же вряд ли получится добиться выпадения ровно пятидесяти «орлов» при ста бросках монеты. Но их будет приблизительно 5000.
У этих 5000 ядер нет ни памяти, ни чувства времени, и они, безусловно, не знают, когда именно я начал за ними наблюдать. Поэтому вероятность распада каждого из них за час составляет 50:50, и это истинно для
Число атомов, оставшихся в то или иное время, распадается по экспоненте, как показывает кривая, изображенная на рис. 6.4. Все обстоит точно так же, как при броске монет. Вероятность выпадения одного «орла» составляет 50 %. Вероятность двух «орлов» кряду – 25 %, поскольку равноценны все четыре следующих возможности: «орел-орел» (ОО), «орел-решка» (ОР), «решка-орел» (РО) и «решка-решка» (РР), и только одна из них дает желаемый исход (два «орла»). Вероятность выпадения трех «орлов» кряду влечет восемь возможных исходов: ООО, ООР, ОРО, ОРР, РРР, РРО, РОР, РОО, и только один из этих восьми будет для нас успешен (три «орла» кряду). В теории вероятностей есть правило, согласно которому для независимых событий (таких, как подбрасывание монетки или радиоактивный распад) мы рассчитываем вероятность всех трех событий в совокупности (первого, И ТАКЖЕ второго, И ТАКЖЕ третьего), просто перемножая вероятности совершения каждого из событий. В этом простом случае, где каждая из вероятностей составляет 1/2 , вероятность получить n «орлов» кряду рассчитывается по формуле P(
В том случае, когда речь идет о радиоактивных ядрах, действует та же самая логика. Просто представим, что каждое ядро в нашей пробе за период полураспада один раз бросает монетку. Тогда половина получит «решку» и распадется, а другая половина, у которой выпадет «орел», продолжит жить. По истечении очередного периода полураспада (еще один бросок) прекратит существование еще одна половина ядер и так далее. Таким образом, можно записать, что число ядер, оставшихся в какой-либо момент времени
где t 1/2
– период полураспада изотопа. Если рассмотреть вышеупомянутый случай приПериоды полураспада у радиоактивных изотопов варьируются в огромных пределах, начиная от 0,0000000000000000000000023 секунды (2,3 x 10–23
с, или 23 йоктосекунды) у Водорода с шестью нейтронами (7H) до 2 200 000 000 000 000 000 000 000 лет (2,2 x 1024 лет, или 2,2 йоттагода – да, йоттагод – это очень долгий год) у Теллура-128. В общем, время жизни приблизительно коррелирует с тем, насколько далеко от границы стабильности располагается изотоп; например, такие изотопы, как Теллур-124, Теллур-125 и Теллур-126, очень уютно устроились в долине стабильности, а 128Te находится недалеко от нее, в то время как у Водорода стабильны лишь 1H и 2H, а 7H –Рис. 6.4. Экспоненциальный распад радиоактивного источника. Один период полураспада – это время, необходимое для того, чтобы произошел распад 50 % образца. В течение следующего периода полураспада распадется 50 % того, что осталось. Таким образом, на горизонтальной оси, представляющей время на графике с периодами полураспада, мы видим, что по истечении пяти периодов полураспада остается лишь 1
/2 -> 1/4 -> 1/8 -> 1/16 -> 1/32 образцаНевозмутимые часы