Читаем Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть полностью

Со вторым компонентом – вероятностью сохранения клиента – дела обстояли чуть сложнее. Как только BT утратила свою монополию на рынке телефонных услуг, многие клиенты решили уйти к ее конкурентам. Соответственно, нам нужно было попытаться предсказать вероятность того, когда текущий клиент может уйти от BT, для чего мы выстроили модель «ухода клиентов», основанную на информации от бывших потребителей BT. Если многие из них относились к определенному географическому региону (и уходили вследствие присутствия в этом регионе успешного конкурента), то существующие клиенты, живущие в том же регионе, получают более высокий балл по шкале ухода, то есть обладают большей потенциальной возможностью покинуть компанию. Если мы видим, что бывшим клиентам было свойственно делать больше международных звонков (конкурент предоставлял более выгодные условия по этой услуге), то клиенты, делающие много международных звонков, получают более высокий балл по шкале ухода.

Выстроенная нами модель принимала во внимание такие данные, как общее количество звонков, количество звонков в течение определенного времени дня и недели, а также баланс между местными, региональными и международными звонками. Она позволила выявить места, где наблюдались самые явные различия между бывшими и текущими клиентами. Мы использовали соответствующие переменные, чтобы рассчитать вероятность ухода текущего клиента. В частности, мы создали рейтинг для каждого существующего клиента в базе данных BT по шкале от 1 до 100. Клиент с рейтингом «1» почти гарантированно оставался с компанией. Клиент с рейтингом «100» уже почти захлопнул за собой дверь. Чуть позже в этой главе мы объясним, каким образом работают модели ухода клиента на практике.

Что касается третьего компонента – интенсивности лояльности клиента к BT, – то для его расчета мы придумали собственную модель. Это было особенно важно именно в то время, так как BT пыталась изменить свое позиционирование от поставщика телефонных услуг на поставщика интегрированных коммуникационных технологий, предлагавшего не только телефонные услуги, но и мобильные сетевые решения, решения в области безопасности данных и многое другое.

Мы создали довольно простое решение: проранжировали все продукты BT по шкале от 1 до 5, при этом единица означала базовый продукт, типа стандартной телефонии, а пятерка – продвинутый продукт, наподобие комплексных решений в области сетевой безопасности. Затем мы рассчитали для каждого клиента долю расходов по каждому продукту, приходившуюся на BT.

Позвольте мне детально рассказать о математическом аппарате в приведенной ниже таблице.

Наш результат мы использовали для расчета средневзвешенного показателя сложности продукта для каждого отдельно взятого клиента. Колонка со средневзвешенным значением получила название «Показатель интенсивности».



Далее, для колонки продуктов BT, мы использовали название «Показатель интенсивности продукта». Стационарная связь получила оценку «1», так как это – простой сервис со сравнительно низкой прибылью. Продукты, связанные с обеспечением безопасности, получили отметку «5», потому что были более сложными и позволяли компании получить более высокую прибыль.

Колонки третья и четвертая в разделе «Расходы» показывают, сколько тратит компания B на каждый продукт, а колонки пятая и шестая («Расходы») показывают долю BT в их расходах на продукт. К примеру, компания А тратит 55,6 % своего телекоммуникационного бюджета на стационарную телефонную связь (100–180 долларов).

Для расчета показателя интенсивности (компания A) мы умножали значение показателя на величину расходов в процентах по каждому продукту (например, показатель интенсивности для Интернета, равный двум, умножался на 27,8 % доли общих расходов), а затем складывали вместе все значения в колонке. В итоге компания A получала показатель интенсивности «183». Для компании B нам требовалось умножить значение в колонке «Показатель интенсивности» на значение показателя «Расходы, в %», а результат занести в восьмую колонку. Согласно данным этой колонки, мы видим, что компания B имеет показатель интенсивности «118». Чем выше число, тем ценнее клиент.

Последний компонент – доля в клиентском кошельке, которую BT не получала, – рассчитывается с помощью уже вышеописанной манипуляции с долей кошелька для каждого продукта и услуги, предлагаемых BT. Мы сопоставили этот показатель с данными отраслевых исследований. Например, оказалось довольно простым делом получить данные по расходам на информационно-коммуникационные технологии (ИКТ) для компаний в определенных категориях рынка с разбивкой по размеру компаний и их местонахождению. Всегда полезно проверять правильность созданной модели с помощью сторонних достоверных данных.

Перейти на страницу:

Похожие книги

Практика управления человеческими ресурсами
Практика управления человеческими ресурсами

В книге всемирно известного ученого дан подробный обзор теоретических и практических основ управления человеческими ресурсами. В числе прочих рассмотрены такие вопросы, как процесс управления ЧР; работа и занятость; организационное поведение; обеспечение организации управления трудовыми ресурсами; управление показателями труда; вознаграждение.В десятом издании материал многих глав переработан и дополнен. Это обусловлено значительным развитием УЧР: созданием теории и практики управления человеческим капиталом, повышенным вниманием к роли работников «передней линии», к вопросам разработки и внедрения стратегий УЧР, к обучению и развитию персонала. Все эти темы рассмотрены в новых или существенно переработанных главах. Также в книге приведено много реальных примеров из практики бизнеса.Адресовано слушателям программ МВА, аспирантам, студентам старших курсов, обучающимся по управленческим специальностям, а также профессиональным менеджерам и специалистам по управлению человеческими ресурсами.

Майкл Армстронг

Деловая литература / Деловая литература / Управление, подбор персонала / Финансы и бизнес
Революция платформ. Как сетевые рынки меняют экономику – и как заставить их работать на вас
Революция платформ. Как сетевые рынки меняют экономику – и как заставить их работать на вас

Эта книга подробно рассказывает о важнейшем экономическом и социальном явлении нашего времени, которое поставили себе на службу Uber, Airbnb, Amazon, Alibaba, PayPal, eBay и другие наиболее динамично растущие бренды, а именно о платформах — новой бизнес‑модели, использующей технологии объединения людей, организаций и ресурсов в интерактивной экосистеме.Если вы хотите узнать, что такое платформы, как они работают, как устроены компании, использующие эту модель, и как создать успешный платформенный бизнес, то эта книга для вас. «Революция платформ» позволит вам легко сориентироваться в новом, меняющемся мире, в котором все мы живем, работаем и развлекаемся.На русском языке публикуется впервые.

Джеффри Паркер , Маршалл ван Альстин , Санджит Чаудари , Санджит Чаудари Альстин

Деловая литература / Деловая литература / Маркетинг, PR / Управление, подбор персонала / Финансы и бизнес