Читаем Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть полностью

В течение двенадцати месяцев перед мартом Мэри стабильно летала по восемь или двенадцать раз в месяц. В марте она летала всего три раза. Это довольно необычно для нее – видимо, в этом месяце произошло нечто особенное. Возможно, она взяла отпуск, начала работать дома или просто заболела. С учетом прежних тенденций ее поведения шансы на то, что в течение следующих двенадцати месяцев она будет тратить на полеты на 80 % меньше прежнего, довольно невелики. Куда больше шансы, что доходы от работы с ней снизятся на 20 %, поскольку далее мы заметим в ее поведении два или три месяца низкой активности.

Между предыдущим мартом и ноябрем поведение Сьюзен было похоже на поведение Мэри. Однако с ноября она начала значительно реже пользоваться услугами нашей авиакомпании.

Судя по всему, речь идет о каких-то системных изменениях. Именно поэтому я считаю, что у нее имеется куда бо́льшая вероятность снижения количества полетов в ближайшие двенадцать месяцев, чем у Мэри.

А поведение Тома кажется совсем иным – оно не носит системного характера. Он стал летать всего два раза в месяц, а в последующие месяцы практически совсем прекратил полеты. Вот почему я совершенно не уверен, что будет происходить с доходами от полетов Тома в следующие двенадцать месяцев.

Уверен, вы поставили Мэри, Сьюзен и Тому примерно такие же оценки, ведь мы все склонны интуитивно анализировать поведение людей примерно сходным образом. Мы посмотрели, насколько часто наши участники летали в среднем, насколько сильно могут колебаться данные от месяца к месяцу, насколько сильно просел показатель количества полетов в марте и приняло ли это характер тенденции.

Я могу создать статистический алгоритм, способный анализировать эту информацию так же, как мы это делаем в своем подсознании. Для этого мне нужно преобразовать наши интуитивно важные факторы в математические переменные. Вот как это могло бы работать.



В крайней правой колонке содержатся переменные нашей модели, буквально предсказывающей вероятность снижения доходов. Статистическая модель выявляет клиентов, доход от которых сократился на 20, 50 и 80 % за прошлый год, затем изучает значение предсказывающих переменных (чуть подробнее об этом ниже) за двенадцать месяцев до начала снижения доходов. Это позволит «научить» модель рассчитывать вероятность того, что расходы какого-то клиента могут снизиться на определенный процент. Безусловно, это довольно существенная информация. Если вы знаете, что один (или несколько) из ваших наиболее важных клиентов (приносящих вам доходы и прибыль) собирается уйти от вас, вы можете предпринять шаги по предотвращению этого. Как минимум вы выясните у них причины ухода и, возможно, предложите им стимулы (скидки, улучшение условий обслуживания и что-то еще), заставляющие их остаться.

Итак, мы с вами рассмотрели данные и практически интуитивно поняли, кто перестанет быть нашим клиентом. Однако в подобных ситуациях лучше воспользоваться статистическими моделями, что будет более эффективно, чем ваша интуиция. Модели могут не только принимать решение, подобное нашим, и делать это гораздо быстрее, но и повторять тот же алгоритм размышлений в отношении тысяч, а то и миллионов других мэри, сьюзен и томов. В дополнение к этому модель способна изучать сотни различных предсказывающих переменных. Переменные в таблице можно сопоставить со всеми остальными нашими знаниями о клиенте: возрасте, поле, национальности, почтовом индексе, использовании призовых баллов программы лояльности (для оплаты билетов, покупки товаров или какой-то комбинации обоих вариантов) – причем практически одновременно. Поэтому статистическое моделирование стало таким мощным инструментом.

Давайте еще раз посмотрим на Сьюзен. Если мы чуть сильнее углубимся в свои знания о ней, то поймем, что она не так давно сменила работу – об этом свидетельствовали изменения в ее профиле участника программы лояльности. Также мы знали, что она переехала на другую квартиру и использовала все накопленные призовые мили, чтобы купить большой телевизор у одного из партнеров авиакомпании. Мы не знаем причин произошедшего, но можем заметить, что и другие клиентки в возрасте Сьюзен (из ее профиля следует, что ей только что исполнилось тридцать шесть лет) совершали подобные вещи и переставали летать на самолетах компании с прежней частотой (это могло быть связано с такими простыми причинами, как снижение частоты путешествий или желание завести семью). Как бы то ни было, но согласно нашему алгоритму будет правильным предположить, что авиакомпания начнет получать меньше доходов от клиенток с таким профилем.

Эта история помогла мне сбросить покров таинственности с процесса статистического моделирования поведения людей. Я понял, что если мне удастся создать детальный список, описывающий клиентов, – не только их имен, но и другой информации (возраст, пол, профессия, уровень дохода, сумма их затрат), – то я смогу сделать вполне обоснованные предположения, сколько продуктов у компании они купят в сравнении с лучшими ее клиентами.

Перейти на страницу:

Похожие книги

Практика управления человеческими ресурсами
Практика управления человеческими ресурсами

В книге всемирно известного ученого дан подробный обзор теоретических и практических основ управления человеческими ресурсами. В числе прочих рассмотрены такие вопросы, как процесс управления ЧР; работа и занятость; организационное поведение; обеспечение организации управления трудовыми ресурсами; управление показателями труда; вознаграждение.В десятом издании материал многих глав переработан и дополнен. Это обусловлено значительным развитием УЧР: созданием теории и практики управления человеческим капиталом, повышенным вниманием к роли работников «передней линии», к вопросам разработки и внедрения стратегий УЧР, к обучению и развитию персонала. Все эти темы рассмотрены в новых или существенно переработанных главах. Также в книге приведено много реальных примеров из практики бизнеса.Адресовано слушателям программ МВА, аспирантам, студентам старших курсов, обучающимся по управленческим специальностям, а также профессиональным менеджерам и специалистам по управлению человеческими ресурсами.

Майкл Армстронг

Деловая литература / Деловая литература / Управление, подбор персонала / Финансы и бизнес
Революция платформ. Как сетевые рынки меняют экономику – и как заставить их работать на вас
Революция платформ. Как сетевые рынки меняют экономику – и как заставить их работать на вас

Эта книга подробно рассказывает о важнейшем экономическом и социальном явлении нашего времени, которое поставили себе на службу Uber, Airbnb, Amazon, Alibaba, PayPal, eBay и другие наиболее динамично растущие бренды, а именно о платформах — новой бизнес‑модели, использующей технологии объединения людей, организаций и ресурсов в интерактивной экосистеме.Если вы хотите узнать, что такое платформы, как они работают, как устроены компании, использующие эту модель, и как создать успешный платформенный бизнес, то эта книга для вас. «Революция платформ» позволит вам легко сориентироваться в новом, меняющемся мире, в котором все мы живем, работаем и развлекаемся.На русском языке публикуется впервые.

Джеффри Паркер , Маршалл ван Альстин , Санджит Чаудари , Санджит Чаудари Альстин

Деловая литература / Деловая литература / Маркетинг, PR / Управление, подбор персонала / Финансы и бизнес