Стремление к разработке хитроумных математических доказательств появилось в результате этих общественных изменений.
Очень часто у нас появляются интуитивные догадки относительно этих вечных истин. Такие предположения возникают, если достаточно долго играть с числами. Кажется, что сумма последовательных простых чисел всегда оказывается квадратным числом: 1 + 3 = 4, 1 + 3 + 5 = 9, 1 + 3 + 5 + 7 = = 16. Но всегда ли работает это правило? Греки не удовлетворились простым наблюдением этой интересной возможной связи между простыми числами и полными квадратами. Они хотели доказать при помощи своего нового инструмента –
Так и началось то великое приключение, которое мы называем математикой. «Начала» Евклида заложили основу для 2000 лет истории математики, в течение которых создавались доказательства, объясняющие странные и удивительные свойства чисел и геометрических фигур. Ферма доказал, что, если возвести число в степень, выраженную простым числом, большим основания, а затем разделить результат на это простое число, остаток от деления будет равен исходному числу. Эйлер доказал, что при возведении числа
Все эти великие достижения – примеры того, чем занимается математик. Математик – не профессиональный вычислитель, а разработчик доказательств. К этому и сводится главный вопрос этой книги: не может ли компьютер стать таким же, как Ферма, Гаусс и Уайлс? Несомненно, компьютер способен обойти любого человека по части вычислений, но как обстоит дело с доказыванием теорем? Доказательство можно выразить в виде последовательности символов и набора правил, указывающих, почему одна группа символов может следовать за другой. Как объяснял Гильберт, для построения математического доказательства необязательно понимать, что означают символы. Не кажется ли такая работа идеально приспособленной для компьютера?
Каждый раз, когда математик берет общепризнанное математическое утверждение и делает из него допустимый логический вывод, возникает новая последовательность символов, представляющая вновь полученное математическое утверждение. Возможно, оно уже есть в перечне доказанных математических утверждений, потому что мы пришли к нему другим путем. Тем не менее таким методом математик (или компьютер) может начать формулировать новые теоремы на основе старых. Не к этому ли мы стремимся? Даже если математика не сводится к вычислениям, разве нельзя сказать, что компьютер уже готов заменить математиков, если можно просто нажать кнопку и он начнет извергать логические следствия из всех известных утверждений?
Здесь-то и вступает в игру творческое начало. Придумать нечто новое легко. Используя нисходящий стиль программирования, вполне можно построить машину, которая будет строчить новые математические теоремы. Трудно создать нечто ценное. Откуда берется эта ценность? Для ее появления необходим разум человека, создающего и потребляющего математические утверждения. Как алгоритм узнает, какое именно математическое построение вызовет тот самый возбуждающий прилив адреналина, который пробуждает от спячки и подталкивает к продолжению работы?
Именно поэтому для математиков, подобных мне, представляет такой интерес – и, возможно, такую опасность – новый, восходящий стиль программирования, который порождает машинное обучение. Эти алгоритмы, которые разрабатывают Хассабис и его коллеги, могут научиться, опираясь на достижения людей-математиков прошлого, отличать захватывающие теоремы от скучных, а это, в свою очередь, может привести машину к формулировке новой ценной теоремы, которая может потрясти математический мир так же, как потрясла мир игр программа AlphaGo.
10
Телескоп математика
Наши письменные принадлежности участвуют
в формировании наших мыслей.