Живую природу можно считать совершенно уникальной системой, приспособленной для извлечения энергии не из концентрированных, а из "размазанных" источников, причем использует она эту энергию с величайшей экономией. Сейчас предпринимается много попыток собирать энергию для технических целей из таких неконцентрированных источников, как солнечный свет, ветер или океан. Многие из них, вероятно, окончатся неудачей, потому что энергетические затраты на постройку соответствующих систем из стали, бетона и других материалов могут оказаться слишком велики и даже не компенсируются при их эксплуатации. Очевидно, необходим совершенно другой подход ко всей проблеме "эффективности". Природа смотрит на эти проблемы с точки зрения "метаболических затрат", и, быть может, мы должны перенять ее опыт.
Дело не только в том, что для производства одной тонны металла или бетона требуется много энергии. Сами эти громоздкие, но слабо нагруженные конструкции, обычно необходимые для систем с малой плотностью перерабатываемой энергии, могут оказаться в несколько раз тяжелее, если их делать из стали и бетона, а не из более подходящих требующих специальной разработки материалов.
Мы вскоре увидим, что одним из самых эффективных в конструкционном смысле материалов может быть дерево. При больших размерах и малых нагрузках конструкция из дерева во много раз легче, чем конструкция из бетона или стали. В прошлом затруднения с использованием древесины во многом определялись медленным ростом леса и необходимостью дорогостоящей выдержки древесины.
Возможно, самое важное достижение в области материалов за последнее
время принадлежит генетикам, которые вывели быстрорастущие породы деревьев,
дающих коммерческую древесину. Сейчас разводят разновидности сосны (
Древесина обычно требовала длительной и дорогостоящей выдержки в специальных сушилках, которые потребляют значительное количество энергии. Сегодня оказалось возможным сократить срок выдержки сортовой мягкой древесины до 24 ч при низкой стоимости процесса сушки. Это имеет очень важное значение не только для строительного дела, но и в связи с мировым энергетическим кризисом.
Анализ весовой эффективности различных материалов в различных конструкциях приведен в приложении 4. Проектирование большинства технически совершенных конструкций, таких, как, например, самолет, во многом определяется величиной
Материалы этого типа могут быть более или менее эффективными в авиакосмической промышленности, но одно можно сказать с уверенностью - они не только дороги, но и требуют больших затрат энергии для своего производства. По этой причине они, вероятно, будут применяться только в специальных целях и, по моему мнению, не найдут широкого применения в обозримом будущем.
Требование высокой жесткости конструкции может очень ограничивать наши возможности. Однако, как мы уже видели, стоимость сжатой конструкции - весовая, а часто и денежная - во многих случаях тоже очень высока. Весовая стоимость
[118] сжатой колонны определяется не отношениемТаблица 7. Критерии эффективности некоторых материалов в различных условиях
Материал
/ Модуль ЮнгаСталь / 210000 / 7,8 / 25000 / 190 / 7,5
Титан / 120000 / 4,5 / 25000 / 240 / 11
Алюминий / 73000 / 2,8 / 25000 / 310 / 15
Магний / 42000 / 1,7 / 24000 / 380 / 20,5
Стекло / 73000 / 2,4 / 25000 / 360 / 17,5
Кирпич / 21000 / 3,0 / 7000 / 150 / 9
Бетон / 15000 / 2,5 / 6000 / 160 / 10
Углеволокнистые композиты / 200000 / 2,0 / 100000 / 700 / 29
Дерево (сосна, ель) / 14000 / 0,5 / 25000 / 500 / 48