b) Короче говоря, в этой формуле—два положенных друг на друга становления: становление бесконечным того числа, с которым единица соотносится (весь натуральный ряд чисел), и становление бесконечной той степени, в которую эта единица вместе со своим инобытийным соотнесением возводится (тут опять натуральный ряд чисел). Стало быть, уже из одного этого видно, что е есть многомерная, т. е. выразительная, эманативная бесконечность, а это и есть признак трансцедентного числа.
3. Тут перед нами прекрасный образец того, каким методом пользуется математика для превращения философского построения в математическое. Этот метод—чисто числовой; и, как таковой, он оставляет без внимания все понятийное содержание философского построения и превращает его в числовую и количественную схему. Однако даже если оставить понятийное содержание без рассмотрения, оно все же вполне определенным образом отражается на числовой схеме и дает ее специфическую формальную структуру и фигурность. И вот эту–то специфическую фигурность числовой схемы, фигурность, выраженную численно, но имеющую не численное, а понятийное происхождение, философ и должен уметь анализировать, если он хочет философски понять математические основы бытия. Число являющееся основным в теории пределов, в своем философско–диалектическом раскрытии дает идеальную выявленность и сконструированность чисто идеальной потенции алогически становящейся единичности. Единица не берется в своем уединенном и тупом существовании, но—как выросшая до той степени, когда она вбирает в себя все свои возможные инобытийные судьбы и дает идеально–софийную воплощенность и субстанциальноэнергийную, эманативную само–преисполненность. Это тот предел, который является первопринципом единицы со всей ее жизнью и судьбой, как бы возросшей, разбухшей, расцветшей единицей, органически ставшей и созревшей, как живое тело, единицей. Это идеальный и энергийный прообраз всякого предела, ибо это предел идеально ставшей единицы.
4. а) Весьма интересно разложение этого е в реальный ряд—с точки зрения предложенной нами диалектики трансцедентности. Возьмем это Неперово число не в виде разложения по биному Ньютона, а в следующем виде, тождественном, как известно, с разложением по правилу бинома Ньютона:
1 +
Попробуем дать диалектическую формулу этого ряда.
Прежде всего мы имеет здесь 1) саму единицу. Далее, мы имеем здесь:
Но это еще не все. Всматриваясь в строение членов ряда, начиная с третьего, мы замечаем, что тут первоначальное отношение