3. Важно также чувствовать энергийный, или, если угодно, силовой, характер арифметических действий. Это тоже дар натурального ряда. Типы сами по себе стабильны—так сказать, мертвы. Они неподвижно покоятся перед нами наподобие раз навсегда скомбинированных понятий или вещей. Арифметические же действия суть некоторого рода силы, смысловые силы и заряды, которые не покоятся на месте, но сущность которых состоит в излиянии силы. Это потому, что тут действует мощь натурального ряда, прямо или косвенно содержащаяся в каждом арифметическом действии. Потому «плюс» (+) есть именно некоторого рода смысловая энергия, энергия стягивания разных становлений в одно, единонаправленное становление. Потому радикал есть смысловая энергия, энергия субстанциального роста одного становления в другом. И т. д. Этой энергийности не было в числовой типологии и не будет в комбинаторно–матричном исчислении.
4. Важно упомянуть здесь еще о трех законах арифметических действий—ассоциативном, коммутативном и дистрибутивном. Прежде всего необходимо ясно понимать, что сами действия от этих законов совершенно не зависят. Раз коммутативный закон, напр., в одних случаях применим к умножению, в других неприменим, то ясно, что о самом умножении нужно говорить вне всякой зависимости его от закона коммутативности. Так мы и делали. Сначала нужно было вывести самые действия, а потом уже говорить об их необязательных законах.
Что же касается теперь самих этих законов, то они возникают на ниве дальнейшего углубления самой категории становления, из которой появились и самые действия. Именно, когда мы говорим о самих действиях, мы, в сущности говоря, рассматриваем голое становление с точки зрения не становящихся, т. е. смысловых, т. е. внутри–эйдетических, категорий. Или, точнее говоря, мы рассматриваем здесь эти последние с точки зрения их раздельного воплощения и становления. Но ничто не мешает нам идти и дальше. Уже получивши данное действие, мы можем внутри него наблюдать разные становления, т. е. разные направления действия. Для этого придется самое действие считать уже не становящимся, а чем–то устойчивым, ставшим и в его пределах судить о значимости отдельных направлений счета. Так мы и произвели дедукцию трех законов счета в § 65, к которому и надо отослать забывчивого читателя. Если все действия и все законы счета in nuce
[915]заложены уже в типе числа, т. е. на стадии идеальной единораздельности числа, то сфера становления развернет эти действия во всей их конкретной структуре, а сфера ставшего развернет и все законы счета, применимые в этих действиях.5. Теперь мы и у новой грани. Арифметические действия нами изучены. Получены они как синтез натурального ряда, или счета, и числовой типологии. Числовой тип погрузился в становление, в счетность, и мы увидели, из каких действий счета он состоит. Но мы могли бы это становление интенсифицировать и дальше. И если бы мы это сделали, мы заметили бы, что новое становление уходит уже не на конструирование арифметического действия, а уходит на что–то другое. А именно, поскольку самое–то действие уже конструировано и его энергийная природа оформлена, дальнейшее становление может наброситься только на самое же действие, на его смысловую субстанцию, на самую его категорию. Это значит, что арифметическое действие перестанет существовать как таковое, а перейдет в свое отрицание, в свое инобытие. Оно распадется, и вместо того становления, из которого оно вырастало, оно создаст распавшееся становление, принципиальйо превратится в устойчиво–ставшее. Но это будет значить, что арифметические действия превратятся в комбинаторно–матричное исчисление.
IV. КОМБИНАТОРНО–МАТРИЧНОЕ ИСЧИСЛЕНИЕ (СТАВШАЯ СУЩНОСТb ЧИСЛА)
1. Категория арифметического действия образована по типу категории становления. Одно становление, более простое, есть натуральный ряд чисел, монотонный счет; другое становление, более сложное и по–разному скомбинированное, есть разно–направленный счет, или арифметическое действие. Но становление где–нибудь останавливается, чтобы быть определенным, а не беспредельным и слепым, бесцельным; оно превращается в ставшее, давая устойчивый результат. Так и арифметическое действие останавливается, приходя к определенному результату, превращается в ставшее. Тогда образуется новая возможность—перебегать по отдельным этапам становления в пределах устойчиво–ставшего. Покамест становление неопределенно развивалось все дальше и дальше, наш взор следовал за ним без оглядки; и потому проходимые этапы становления совсем никак не фиксировались. Но вот мы положили точный предел для нашего становления. Сейчас же образовалась возможность многократного перебегания в разных направлениях по пути совершившегося становления, и мы теперь твердо фиксируем отдельные вехи этого последнего как устойчивые, как вполне неподвижные.