Читаем Личность и Абсолют полностью

4. С внешней стороны детерминант производит довольно громоздкое впечатление. Этому способствуют также многие технические способы оперирования с детерминантами, находимые нами в математической практике. Напр., правило Сарруса для вычисления детерминанта удивляет своей внешней механичностью. Такова же и теорема Крамера для решения системы уравнений при помощи детерминантов. Внешняя громоздкость увеличивается учением о минорах, об адъюнктах, о сложении и умножении и т. д. Тем не менее должен быть какой–то простейший логический принцип для всей этой технической сложности, какая–то простейшая диалектическая категория, которая бы позволяла обнять все эти многочисленные числа и операции в одном простом единстве. Этот принцип и эту категорию мы и находим в синтезе количественно–смысловой и количественно–фактической сторон числа, в синтезе чистого количества с чистыми актами полагания, причем то и другое появляется здесь в диалектически развитом виде. Берется чистое количество в развитом виде, берется акт полагания в развитом виде, и дается синтез того и другого тоже в развитом виде. Диалектически же развитой мы считаем ту смысловую установку, которая прошла по крайней мере три диалектических шага.

Отсюда понятной является и нижеследующая схема диалектического развития понятия детерминанта. В этой схеме категории I, II и III и категории 1, 2, 3 связаны между собою элементарной диалектической триадой. Все же вместе связано тут как то целое, которое появляется в результате диалектического взаимоопределения двух главных элементов числа—количественного смысла и актов полагания, принципиально таящихся во всяком числе, но здесь призванных создать из своего взаимоопределения новую диалектическую категорию.

5. Необходимо заметить, что детерминант можно понимать и не чисто арифметически. Под арифметикой (§ 81) мы понимаем оперирование над непосредственными значениями чисел в отличие от их функциональных отношений, относимых нами к алгебре и анализу. Детерминанты могут в этом смысле иметь чисто арифметическую природу. Но существуют еще функциональные детерминанты, место рассмотрения которых в алгебре. Существуют детерминанты бесконечного порядка, у которых строки или столбцы обладают признаками сходящегося ряда. Место этих детерминантов, конечно, в анализе, равно как и рассмотрение детерминантов в целях решения системы уравнений относится к алгебре (в случае обыкновенных линейных уравнений) или к анализу (в случае дифференциальных линейных уравнений с постоянными коэффициентами).

§ 122. Матрицы.

1. Детерминант представляет собою наиболее зрелый диалектический продукт ставшей сущности арифметического числа, понимаемого как отдельное число. Однако ставшая сущность числа отнюдь не есть только отдельное число. Наоборот, ставшая сущность, как мы видели в § 120, есть остановившееся становление числа, а таковое всегда предполагает некоторую как бы объемность, т. е. множественность и раздробленность, или комбинацию, систему чисел. Детерминант возник на почве диалектики отдельного числа, а ставшая сущность числа есть комбинация чисел. Отсюда сам собой возникает переход от безразличной общности комбинации к ее единораздельной системе. И теперь должна быть на очереди не просто система чисел вообще, для которой известен только общий принцип ее построения (отношение, пропорция, ряд), но и система чисел как именно система, т. е. сиетема во всей положенности своих элементов. С другой стороны, поскольку наша диалектика уже достигла зрелости детерминанта, новая категория должна вместить в себе достигнутую ступень и новое понятие должно быть образовано на основе учения о детерминанте. Такой категорией и является матрица.

2. а) После изучения детерминанта матрица оказывается и чем–то простым, уже известным, и чем–то безусловно новым. С одной стороны, матрица почти ничем не отличается от детерминанта. Она есть таблица чисел, но и детерминант пишется в виде таблицы чисел. И если из матрицы можно получить известное количество дeтepминaнoв, то и всякий детерминант возможен только потому, что существует определенная матрица. Однако, с другой стороны, между детерминантов и матрицей существует и огромное различие. В основном оно сводится к тому, что детерминант всегда есть определенное число, матрица же есть система чисел. Это и заставило нас детерминант объединять с комбинированной представимостью отдельного числа, а матрицу—с числом, понимаемым как система. Детерминант есть отдельное число как система чисел, матрица же есть система чисел как система чисел. Это сразу накладывает неизгладимый математически–диалектический след на понятие матрицы, не только расширяя прежнее понятие детерминанта, но и дополняя его некоторыми совершенно не бывшими до того особенностями.

b) Если бы мы захотели представить себе более конкретно диалектическую сущность матрицы, мы должны [были] бы выдвинуть тут на первый план понятие комплекса, уже хорошо известное нам из теории мнимостей (§ 105) и из теории гиперкомплексных чисел (§ 113). Попробуем в этом разобраться.

Перейти на страницу:

Похожие книги

Этика Спинозы как метафизика морали
Этика Спинозы как метафизика морали

В своем исследовании автор доказывает, что моральная доктрина Спинозы, изложенная им в его главном сочинении «Этика», представляет собой пример соединения общефилософского взгляда на мир с детальным анализом феноменов нравственной жизни человека. Реализованный в практической философии Спинозы синтез этики и метафизики предполагает, что определяющим и превалирующим в моральном дискурсе является учение о первичных основаниях бытия. Именно метафизика выстраивает ценностную иерархию универсума и определяет его основные мировоззренческие приоритеты; она же конструирует и телеологию моральной жизни. Автор данного исследования предлагает неординарное прочтение натуралистической доктрины Спинозы, показывая, что фигурирующая здесь «естественная» установка человеческого разума всякий раз использует некоторый методологический «оператор», соответствующий тому или иному конкретному контексту. При анализе фундаментальных тем этической доктрины Спинозы автор книги вводит понятие «онтологического априори». В работе использован материал основных философских произведений Спинозы, а также подробно анализируются некоторые значимые письма великого моралиста. Она опирается на многочисленные современные исследования творческого наследия Спинозы в западной и отечественной историко-философской науке.

Аслан Гусаевич Гаджикурбанов

Философия / Образование и наука
Осмысление моды. Обзор ключевых теорий
Осмысление моды. Обзор ключевых теорий

Задача по осмыслению моды как социального, культурного, экономического или политического феномена лежит в междисциплинарном поле. Для ее решения исследователям приходится использовать самый широкий методологический арсенал и обращаться к разным областям гуманитарного знания. Сборник «Осмысление моды. Обзор ключевых теорий» состоит из статей, в которых под углом зрения этой новой дисциплины анализируются классические работы К. Маркса и З. Фрейда, постмодернистские теории Ж. Бодрийяра, Ж. Дерриды и Ж. Делеза, акторно-сетевая теория Б. Латура и теория политического тела в текстах М. Фуко и Д. Батлер. Каждая из глав, расположенных в хронологическом порядке по году рождения мыслителя, посвящена одной из этих концепций: читатель найдет в них краткое изложение ключевых идей героя, анализ их потенциала и методологических ограничений, а также разбор конкретных кейсов, иллюстрирующих продуктивность того или иного подхода для изучения моды. Среди авторов сборника – Питер Макнил, Эфрат Цеелон, Джоан Энтуисл, Франческа Граната и другие влиятельные исследователи моды.

Коллектив авторов

Философия / Учебная и научная литература / Образование и наука