V. УЧЕНИЕ О КОМПОЗИЦИЯХ (ВЫВОЖЕННАЯ СУЩНОСТb ЧИСЛА)
1. Поскольку учение о композициях есть заключительный отдел арифметики, выявляющий наиболее зрелые в диалектическом смысле формы числа, а именно выразительные формы, постольку надо особенно тщательно усвоить себе понятие композиции, связывая его по возможности в единое целое со всей арифметикой вообще.
a) Арифметика вся вырастает на перво–принципе, который у нас носит название единицы. В чистом виде единица вполне аналогична точке, не имеющей ни одного измерения, т. е. она в себе нерасчленима, хотя и является принципом различимости. Ее многосложная диалектическая судьба сводится к ряду погружений в инобытие и ряду новых возникновений из него—в обновленном виде. Погрузившись впервые в такое инобытие и натолкнувшись там на абсолютное препятствие (а таковым является для нее она же сама, поскольку она хочет в этом инобытии осуществиться, т. е. найти себя же саму), она отскакивает от инобытия к себе самой и превращается в новый тип числа, который поэтому в сравнении с натуральным рядом уже содержит в себе два смысловых слоя. А этот тип числа, устремившись в свое собственное инобытие и тем самым развернувши себя в арифметическое действие, снова наскакивает в этом инобытии на самого себя (по той же причине) и, отскакивая от него, т. е. от себя в инобытии, вновь возвращается к себе, содержа отныне в себе уже не два, а три смысловых слоя.
Первые два смысловых слоя были само число натурального ряда и многообразная скомбинированность его из единиц этого ряда. Три смысловых слоя, образовавшиеся в ставшей сущности, суть указанные два плюс их осуществленность в новом инобытии, в результате чего первые два становятся в определенное отношение к третьему слою, т. е. в результате чего образуется некое отношение, которое является законом построения целой комбинации чисел (напр., ряда). Разные диалектические ступени внутри этой ставшей сущности постепенно и все более и более конкретно осуществляют это отношение чисел на этой комбинации чисел.
Та ступень, которая дает отношение, пропорцию и ряд, еще оставляет указанные три слоя в том их сыром виде, в каком доставила их нам ставшая сущность. Но уже вторая ступень (делимость, комбинаторика, детерминанты) растворяет первые два слоя один в другом, так что остается только одно непосредственное число, воплощаемое на комбинации чисел. Третья ступень, матрица, сливает и два оставшихся слоя в один, так что ставшая сущность получает ровное и гладкое многомернее строение, когда перед нами целая система разных, но вполне равноправных чисел, данная в виде неподвижной таблицы. Та единица, с которой началась арифметика, расцвела здесь в целую систему разноприродных и разноскомбинированных единиц.
b) Но сущность единицы заключается в единичности, в объединении всего иного, чему она сообщается. И эта разноприродная разноскомбинированная единица переходит еще в дальнейшее инобытие, с тем что [бы ] и его превратить в себя, т. е. в эту разноприродную и разноскомбинированную коллективную единичность. Однако везде было так, что бытие, сообщаясь инобытию, отчуждалось от себя самого и снимало с себя план, снимало свой смысл, чтобы передать его инобытию и, таким образом, иметь этот смысл уже общим и для себя, и для евоего инобытия. Точно так же и здесь система чисел, передавая свой смысл инобытию, тем самым создает некую общую закономерность, одинаково присутствующую и на ней, и на ее инобытии, т. е. тем самым создается уже несколько систем, объединенных одной общей закономерностью.