Читаем Люди на Луне полностью

Современный подход к конструированию космических кораблей и станций предполагает, что солнечные частицы низкой и средней энергии поглощаются конструкцией космического корабля. Галактические космические лучи способны прошивать насквозь весь корабль вместе с телами космонавтов, но такое воздействие на организм менее негативно благодаря тому, что лишь малая энергия такой частицы оказывает воздействие на организм. Если же частица высокой энергии сталкивается с плотным материалом, например свинцом, то вся ее энергия может породить поток вторичной радиации, которая уже более вредна для организма. Поэтому лучше толстый слой защиты низкой плотности, чем тонкий свинцовый или стальной лист.

Сегодня разрабатываются в качестве эксперимента специальные пластиковые или водяные средства защиты от космической радиации, но в космос летают пока без них. Наиболее защищенным от космической радиации местом в корабле или на станции является отсек, вокруг которого больше всего оборудования и у которого корпус толще всего. Для космических кораблей это спускаемый отсек, имеющий более массивную и прочную конструкцию, чтобы выдержать столкновение с атмосферой, и дополнительную композитную теплозащиту.

Теплозащита, спасающая корабль и экипаж от нагрева при вхождении в атмосферу, когда он возвращается из космоса, может быть разной конструкции: либо абляционной («сгорающей»), как на Apollo и «Союзах», либо теплоемкой, как на многоразовых челноках Space Shuttle и корабле «Буран». На новом корабле Orion применяется комбинированный вариант теплозащиты: абляционная в донной части и теплоемкая – по стенкам. Абляционная теплозащита может создаваться из разных материалов, но в основном это углеродные волокна и стеклоткань, пропитанные эпоксидной смолой. Толщина теплового щита также различается. Самый толстый слой – в донной части корабля, которая принимает на себя основной удар атмосферы и нагрев.

При расчете степени радиационного воздействия определяется средняя плотность экранирующего материала. Хотя толщина стенок в разных участках корабля может меняться, но и космические лучи могут прилетать из любой области окружающего пространства. Плотность экранирующего материала считают в единицах массы на единицу площади, например 10 г на кв. см равно слою воды толщиной 10 см, слою алюминия толщиной 3,5 см, слою стали толщиной 1,2 см или слою свинца толщиной 0,8 см.

Зная массу и площадь конструкции командного отсека Apollo, мы можем рассчитать, какую степень защиты он обеспечивал астронавтам.

Командный модуль Apollo, где находился экипаж во время полета на Луну и обратно, обладал жестким герметичным корпусом массой 1560 кг и тепловой защитой в 850 кг. В пересчете на площадь поверхности модуля (около 35 кв. м) получается, что экипаж был защищен слоем материала массой 7 г на 1 кв. см площади:

(1 560 000 г + 850 000 г) ÷ 350 000 кв. см = 7 г на кв. см.

Это эквивалентно слою алюминия толщиной 2,6 см, что довольно мало для защиты от космической радиации в длительном полете. Из-за таких расчетов в интернете встречаются утверждения, что люди вообще не могли преодолевать радиационные пояса и летать на Луну.

Однако у экипажа Apollo была более высокая степень защиты от радиации: не стоит забывать, что от космических частиц защищает любое вещество, а не только корпус корабля. Суммарная же масса заправленного командного модуля Apollo составляла 5560 кг. Жилой объем корабля составлял 6,2 куб. м, но внутренний объем корабля, заполненный атмосферой, был больше – 10,4 куб. м. Составлявшие разницу 4,2 куб. м были заполнены грузами, приборами и оборудованием корабля. Площадь внутренней поверхности обитаемого отсека корабля Apollo составляла около 20 кв. м. Пять с половиной тонн конструкции корабля, двигателей, топливных баков, системы жизнеобеспечения, пультов управления, стыковочного узла, запасов пищи и воды, окружающие жилой объем площадью 20 кв. м, обеспечивали более серьезную защиту от радиации, чем простой корпус.


Схема расположения оборудования и грузов внутри жилого объема командного модуля корабля Apollo. NASA


Для определения степени радиационной защиты снаряженного командного модуля Apollo надо учитывать среднее арифметическое площадей внешней и внутренней поверхности, оно составит примерно 27,5 кв. м. Тогда выходит, что среднее экранирование командного модуля Apollo составляло 20 г на кв. см:

5 560 000 г ÷ 275 000 кв. см = 20 г на кв. см.

Это эквивалентно слою алюминия толщиной в 7,5 см, чего уже более чем достаточно для защиты человека внутри космического корабля, как кратковременно пересекающего радиационные пояса, так и летящего на Марс. Примерно такое экранирование было у радиационного детектора RAD на борту марсохода Curiosity, который показал, что уровень облучения в межпланетном пространстве в среднем равен 0,03–0,04 рад в сутки. Эти значения полностью совпадают с данными Apollo.


Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Вызовы и ответы. Как гибнут цивилизации
Вызовы и ответы. Как гибнут цивилизации

Арнольд Тойнби (1889–1975) – английский философ, культуролог и социолог. Он создал теорию «вызова и ответа» (challenge and response) – закономерность, которая, по его мнению, определяет развитие цивилизации. Сэмюэл Хантингтон (1927–2008) – американский философ, социолог и политолог. Он утверждал, что каждая цивилизация видит себя центром мира и представляет историю человечества соответственно этому пониманию. Между цивилизациями постоянно идет противостояние и нередко возникают конфликты. Исход такой борьбы зависит от того, насколько данная цивилизация «соответствует» сложившемуся миропорядку.В данной книге собраны наиболее значительные произведения А. Тойнби и С. Хантингтона, позволяющие понять сущность их философии, сходство и расхождения во взглядах. Особое внимание уделяется русской цивилизации, ее отличиям от западной, точкам соприкосновения и конфликтам русского и западного мира.

Арнольд Джозеф Тойнби , Самюэль Хантингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература