Задержимся здесь на секунду. Возможно, вы слышали выражение: «Из противоречия следует все что угодно». Это верно, но почему? Потому, что верен более глубокий и общий принцип: «Из лжи следует все что угодно». Теперь нам это нетрудно понять. Вспомним импликацию «a — > b» и ее таблицу истинности. Эта таблица показывает, что, когда первый член импликации ложен, импликация всегда будет истинна, независимо оттого, истинен или ложен ее второй член. Следовательно, если у вас имеется некоторое ложное суждение, скажем, «Дважды два равно пяти», то вы можете к нему с помощью знака импликации присоединить любое суждение, и ваша импликация в целом будет истинна: «Если дважды два равно пяти, то Луна сделана из творога» — истинно, «Если дважды два равно пяти, то Солнце вращается вокруг Земли» — тоже истинно! Когда импликация (т. е. союз «если… то») истолковывается как логическое следование, то и получают общий принцип: из лжи следует все что угодно. Противоречие всегда ложно, поэтому из противоречия также следует все что угодно.
Возникает вопрос: ну и что же здесь плохого? Раз из противоречия можно вывести все, то можно вывести и истину. Таким образом, даже допустив противоречие, мы все равно можем прийти к истине, к верному решению проблемы. Это действительно так, вы можете прийти к истинному решению проблемы. Однако дело в том, что, приняв противоречие, вы теряете возможность отличать истину от лжи: ложь будет выглядеть столь же убедительно, как и истина. Вы потеряете способность ориентироваться в окружающем мире, отличать вымысел от реальности, и однажды эта реальность больно накажет вас за это.
Противоречивыми бывают и понятия, когда в их содержание входят несовместимые признаки, например «круглый квадрат» или «женатый холостяк». Но главное, конечно, это противоречие между суждениями. Следует иметь в виду, что противоречие возникает лишь тогда, когда об одном и том же мы что-то утверждаем и одновременно отрицаем в одно и то же время в одном и том же отношении. Если же речь идет о разных предметах или предмет берется в разных отношениях, или высказывания относятся к разным периодам времени, то противоречия может и не быть. Например, не впадая в противоречие, можно принять два высказывания: «Сегодня жарко» и «Сегодня холодно», если слово «сегодня» в первом случае относится к 10 июля, а во втором — к 10 января.
В романе И.С. Тургенева «Рудин» есть такой диалог Рудина и Пигасова:
«Прекрасно! — промолвил Рудин. — Стало быть, по-вашему, убеждений нет?
— Нет и не существует.
— Это ваше убеждение?
— Да.
— Как же вы говорите, что их нет? Вот вам уже одно, на первый случай.
Все в комнате улыбнулись и переглянулись».
Здесь Пигасов утверждает, что никаких убеждений не существует, и в то же время признает существование некоторого убеждения, впадая тем самым в очевидное противоречие.
3. Закон исключенного третьего: из двух противоречащих друг другу суждений одно обязательно истинно.
Это означает, что две противоречащие друг другу мысли не могут быть одновременно истинными (об этом говорит закон противоречия), но они не могут быть и одновременно ложными — одна из них необходимо истинна, другая — ложна. Иначе говоря, если перед вами два противоречащих друг другу суждения, то истина содержится в одном из них, не нужно искать ее где-то в другом месте, третьего не дано (tertium поп datur, как говорили латиняне). Например, число 7 четное, либо нечетное; Иванов женат, либо неженат — что-то из этого обязательно истинно. Один человек гордился выучкой своей собаки. Когда он отдавал ей команды: «Иди ко мне или не ходи!», «Ешь или не ешь!», она всегда выполняла их. Однако мы с вами теперь понимаем, что здесь нет повода для гордости — поведение собаки подчиняется закону исключенного третьего.
В пьесе Ж.-Б. Мольера «Мещанин во дворянстве» есть такой диалог:
«Г-н Журден: …А теперь я должен открыть вам секрет. Я влюблен в одну великосветскую даму, и мне бы хотелось, чтобы вы помогли мне написать ей записочку, которую я собираюсь уронить к ее ногам.
Учитель философии: Отлично.
Г-н Журден: Ведь правда, это будет учтиво?
Учитель философии: Конечно. Вы хотите написать ей стихи?
Г-н Журден: Нет-нет, только не стихи.
Учитель философии: Вы предпочитаете прозу?
Г-н Журден: Нет, я не хочу ни прозы, ни стихов. Учитель философии: Так нельзя: или то, или другое.
Г-н Журден: Почему?
Учитель философии: По той причине, сударь, что мы можем излагать свои мысли не иначе как прозой или стихами.
Г-н Журден: Не иначе как прозой или стихами?
Учитель философии: Не иначе, сударь. Все, что не проза, то стихи, а что не стихи, то проза».