Читаем Математические головоломки полностью

От дома молодого человека до дома доктора 2,4 км.

Артель косцов

Известный физик А.В. Цингер в своих воспоминаниях о Л.Н. Толстом рассказывает о следующей задаче, которая очень нравилась великому писателю:

«Артели косцов надо было скосить два луга, один вдвое больше другого. Половину дня артель косила большой луг. После этого артель разделилась пополам: первая половина осталась на большом лугу и докосила его к вечеру до конца; вторая же половина косила малый луг, на котором к вечеру еще остался участок, скошенный на другой день одним косцом за один день работы.

Сколько косцов было в артели?»


РЕШЕНИЕ

В этом случае, кроме главного неизвестного – числа косцов, которое мы обозначим через х, – удобно ввести еще и вспомогательное, именно – размер участка, скашиваемого одним косцом в 1 день; обозначим его через у. Хотя задача и не требует его определения, оно облегчит нам нахождение главного неизвестного.



Рис. 3


Выразим через х и у площадь большого луга. Луг этот косили полдня х косцов; они скосили .

Вторую половину дня его косила только половина артели, т. е.  косцов; они скосили


Так как к вечеру скошен был весь луг, то площадь его равна


Выразим теперь через х и у площадь меньшего луга. Его полдня косили  косцов и скосили площадь . Прибавим недокошенный участок, как раз равный у (площади, скашиваемой одним косцом в 1 рабочий день), и получим площадь меньшего луга:



Остается перевести на язык алгебры фразу: «первый луг вдвое больше второго», – и уравнение составлено:


Сократим дробь в левой части уравнения на у; вспомогательное неизвестное благодаря этому исключается, и уравнение принимает вид


откуда x = 8.

В артели было 8 косцов.

После напечатания первого издания «Занимательной алгебры» проф. А.В. Цингер прислал мне подробное и весьма интересное сообщение, касающееся этой задачи. Главный эффект задачи, по его мнению, в том, что «она совсем не алгебраическая, а арифметическая и притом крайне простая, затрудняющая только своей нешаблонной формой».

«История этой задачи такова, – продолжает проф. А.В. Цингер. – В Московском университете на математическом факультете в те времена, когда там учились мой отец и мой дядя И. И. Раевский (близкий друг Л. Толстого), среди прочих предметов преподавалось нечто вроде педагогики. Для этой цели студенты должны были посещать отведенную для университета городскую народную школу и там в сотрудничестве с опытными искусными учителями упражняться в преподавании. Среди товарищей Цингера и Раевского был некий студент Петров, по рассказам – чрезвычайно одаренный и оригинальный человек. Этот Петров (умерший очень молодым, кажется, от чахотки) утверждал, что на уроках арифметики учеников портят, приучая их к шаблонным задачам и к шаблонным способам решения. Для подтверждения своей мысли Петров изобретал задачи, которые вследствие нешаблонности очень затрудняли «опытных искусных учителей», но легко решались более способными учениками, еще не испорченными учебой. К числу таких задач (их Петров сочинил несколько) относится и задача об артели косцов. Опытные учителя, разумеется, легко могли решать ее при помощи уравнения, но простое арифметическое решение от них ускользало. Между тем задача настолько проста, что привлекать для ее решения алгебраический аппарат совсем не стоит.

Если большой луг полдня косила вся артель и полдня пол-артели, то ясно, что в полдня пол-артели скашивает  луга. Следовательно, на малом лугу остался нескошенным участок в .


Рис. 4


Если один косец в день скашивает  луга, а скошено было , то косцов было 8.

Толстой, всю жизнь любивший фокусные, не слишком хитрые задачи, эту задачу знал от моего отца еще с молодых лет. Когда об этой задаче пришлось беседовать мне с Толстым – уже стариком, его особенно восхитило то, что задача делается гораздо яснее и прозрачнее, если при решении пользоваться самым примитивным чертежом (рис. 4)».

Ниже нам встретятся еще несколько задач, которые при некоторой сообразительности проще решаются арифметически, чем алгебраически.

33


Коровы на лугу

ЗАДАЧА

«При изучении наук задачи полезнее правил», – писал Ньютон в своей «Всеобщей арифметике» и сопровождал теоретические указания рядом примеров. В числе этих упражнений находим задачу о быках, пасущихся на лугу, – родоначальницу особого типа своеобразных задач наподобие следующей.

«Трава на всем лугу растет одинаково густо и быстро. Известно, что 70 коров поели бы ее в 24 дня, а 30 коров – в 60 дней. Сколько коров поели бы всю траву луга в 96 дней?»

Задача эта послужила сюжетом для юмористического рассказа, напоминающего чеховский «Репетитор». Двое взрослых, родственники школьника, которому эту задачу задали для решения, безуспешно трудятся над нею и недоумевают:

Перейти на страницу:

Все книги серии Простая наука для детей

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии