Читаем Математический аппарат инженера полностью

Первая таблица соответствует объединению пар эквивалентных состоянии {0,4} и {1, 5}, а вторая - объединению пары {2, 6}. Сокращенный автомат содержит только четыре состояния (рис.240, б).

8. Эквивалентное разбиение. Если известны все пары эквивалентных состояний конечного автомата, то тем самым на множестве S его состояний определено отношение эквивалентности, которому соответствует некоторое разбиение на классы эквивалентности S = {S1, S2 ..., Sν}. При этом состояние, не имеющее эквивалентного ему состояния, составляет класс эквивалентности, единственным элементом которого является это состояние. Обозначим через σ'0, σ'1, ..., σ'

ν представители классов эквивалентности и через М' – автомат, множеством состояний которого является семейство представителей S' = {σ'0, σ'1, ..., σ'ν}. Можно утверждать, что автоматы М и М' эквивалентны (М ~ М'), причем М'
имеет минимальное число состояний, т. е. является минцмальной формой автомата.

Объединение эквивалентных состояний в классы эквивалентности осуществляется весьма просто. Если σi ~ σj и σj ~ σk, то на основе свойства транзитивности следует, что σi ~ σk, и, значит, пары {σi , σj{σj , σk

} входят в общий для них класс эквивалентности. Но для выявления всех пар эквивалентных состояний требуется более громоздкая процедура, так как множество таких пар не исчерпывается явно эквивалентными состояниями и не всегда может быть полностью обнаружено и объединено способом, изложенным ранее.

Для эквивалентного разбиения множества S состояний автомата предложен ряд способов. Один из них основан на последовательном рассмотрении всевозможных пар состояний и исключении тех из них, которые не являются эквивалентными. При этом пары одинаковых состояний {σi , σi}, являющиеся в силу свойства рефлективности заведомо эквивалентными {σii}, не рассматриваются. Процедура эквивалентного разбиения осуществляется по таблице пар состояний, которая получается на основе общей таблицы переходов автомата. Так как явно различимые пары состояний (для таких состояний строки в таблице выходов различные) не могут быть эквивалентными, то они в таблицу пар не включаются. Для каждой пары отводится строка, для каждого входа – столбец, ав клетках на основании таблицы переходов указывается пара состояний, в которые переходит автомат из данной пары состояний при данном входном воздействии (порядок записи состояний в каждой паре безразличен). Исключаемые пары отмечаются каким-либо способом (набираются жирным шрифтом, подчеркиваются или снабжаются меткой). Далее приведены общая таблица переходов (табл. 10) и полученная из нее таблица пар состояний некоторого автомата.

- 575 -

Так как одинаковые строки таблицы выходов соответствуют множествам состояний {0, 2, 4, 6, 7} и {1, 3, 5, 8}, то в первом столбце таблицы пар указаны только попарные комбинации таких состояний, которые входят в одно и то же множество, т. е. не являются явно различимыми.

Исключение пар основано на следующем положении: если состояния σi и σj эквивалентны, то эквивалентными являются и состояния, в которые автомат переходит под любым входным воздействием. Это значит, что на первом шаге необходимо отметить те пары, которые переходят в пары, состоящие из различных состояний и отсутствующие в первой графе таблицы. Так как обозначенные пары не могут быть эквивалентными, то на следующем шаге отмечаются все те пары, которые переходят в пары, отмеченные на предыдущем шаге и т. д. Процесс заканчивается тогда, когда среди неотмеченных пар уже нет таких, которые можно отметить в соответствии с изложенным правилом. После этого неотмеченные пары и представляют собой попарно эквивалентные состояния.

В приведенном примере на первом шаге отмечаются пары {1, 8}, {3, 8} и {5, 8}, на втором – {1, 5} и {3, 5}, на третьем – {0, 4}, {0, 6}, {2, 4}, {2, 6}, {4, 7} и {6, 7}. Эквивалентными являются неотмеченные пары {0, 2}, {0, 7}, {1, 3}, {2, 7} и {4, 6}, образующие классы эквивалентности S0

= {0, 2, 7}, S1 = { 1, 3} и S2 = { 4, 6}. Кроме того, не вошедшие в эти множества состояния 5 и 8 образуют классы эквивалентности S3 = {5} и S4 = {8}. Обозначив представителей полученных пяти классов соответственно числами от 0 до


- 576 -


4, получим для рассматриваемого автомата минимальную форму с пятью состояниями и общей таблицей переходов:

Следует отметить, что автомат, все состояния которого эквивалентны, сводится к автомату с одним состоянием, т. е. представляет собой по существу комбинационную схему. Автомат, среди состояний которого нет эквивалентных, является несократимым.


Рис. 241. Граф неполного автомата (а) и его минимальная форма (б).


Если М' – минимальная форма автомата М, то она единственна и несократима.

Перейти на страницу:

Похожие книги

Оружие современной пехоты. Иллюстрированный справочник Часть I
Оружие современной пехоты. Иллюстрированный справочник Часть I

В книге в популярной форме рассказано о современной системе вооружения пехоты, об истории и путях ее дальнейшего развития, а также об основах устройства оружия. Для более подробного рассмотрения автором отобраны самые распространенные образцы. Издание подготовлено для всех интересующихся историей военной техники и современным боевым оружием. Прим. OCR: Для популярного справочника очень доступно и одновременно подробно рассмотрены варианты оружейной автоматики, типы затворов и т.п. Достаточно, что бы не считать внешнее сходство оружия доказательство его копирования. Качество фотоматериалов к сожалению очень низкое – лучше скана в сети не нашлось.

Семен Леонидович Федосеев

Военное дело / Военная история / Справочники / Технические науки / Военная техника и вооружение / Образование и наука / Словари и Энциклопедии