Ему нравилось объяснять это на примере муравья, живущего на поверхности и не способного покинуть ее ни для того, чтобы проникнуть внутрь, ни для того, чтобы подняться в пространство. Все, что знает муравей, — это поверхность. Даже свет заперт на поверхности, он движется вдоль геодезических кривых, — и муравей не видит, что его аналог пространства — его мир — изогнут. Однако он может догадаться о его кривизне, если проведет триангуляционную съемку. Крохотные треугольнички расскажут ему о метрике его Вселенной, а затем он сможет применить формулу Гаусса. Поползав немного по своей поверхности и поизмеряв расстояния, он сможет заключить, что его вселенная искривлена.
Такое представление о кривизне отличается в некоторых отношениях от обычного представления о ней. К примеру, скатанная в трубку газета не искривлена, хотя и выглядит как цилиндр. Чтобы понять почему, взгляните на буквы в заголовке. Мы видим, что они искривлены, но, если говорить о них по отношению к бумаге, их форма остается неизменной. Ничто не растягивается, ничто не сдвигается. Муравей не заметил бы никаких отличий на небольших участках газеты. Если говорить о метрике, газета по-прежнему
Плоская метрика имеет смысл — если, конечно, к ней привыкнуть, — потому что именно благодаря ей вы можете скатать газету в цилиндр. Все расстояния и углы, измеренные в пределах бумаги, останутся прежними. Обитающий на газете муравей не в состоянии локально отличить скатанную в цилиндр газету от плоского листа.
Другое дело — глобальная, или общая, форма. У цилиндра не такие геодезические линии, как у плоскости. Все геодезические линии плоскости представляют собой прямые, которые уходят в бесконечность и никогда не замыкаются. На цилиндре некоторые геодезические линии могут быть замкнутыми, они обходят цилиндр вокруг и возвращаются в ту же начальную точку. Представьте себе резинку, которой можно обхватить свернутую в рулон газету. Эта резиновая полоска образует замкнутую геодезическую кривую. Такого рода глобальная разница в форме относится к общей топологии — к тому, как кусочки поверхности складываются вместе. А метрика говорит нам только о кусочках.
Древние цивилизации находились, по существу, в положении того муравья. Люди тогда не могли подняться в воздух на воздушном шаре или аэроплане, чтобы увидеть сверху форму Земли. Но они могли провести измерения и попробовать вывести из них размеры и топологию. У них, в отличие от муравья, были и кое-какие внешние помощники: Солнце, Луна и звезды. Но когда речь заходит о форме всей Вселенной, мы оказываемся в точности в положении муравья. Чтобы определить форму Вселенной изнутри, нам приходится использовать аналогии с геометрическими упражнениями муравья.
С точки зрения муравья, поверхность имеет два измерения. Это значит, что для составления карты любого участка местности достаточно двух координат. Если не брать во внимание небольшие изменения высоты, земным навигаторам достаточно только широты и долготы, чтобы узнать, где они находятся на земной поверхности. У Гаусса был блестящий ученик по имени Бернхард Риман, и он — с подачи наставника — решил обобщить формулу Гаусса для кривизны на «поверхности» с произвольным числом измерений. Поскольку на самом деле это уже не поверхности, для их обозначения Риману потребовался новый термин, и он выбрал немецкое слово
Другие математики, среди них несколько итальянцев, заразились многомерными поверхностями и создали новую область математики: дифференциальную геометрию. Именно им принадлежит большая часть базовых идей о многомерных поверхностях. Но все эти идеи они рассматривали с чисто математической точки зрения. Никто не подозревал, что дифференциальная геометрия может быть применима к реальному пространству.
Вдохновленный своим успехом с общей теорией относительности, Эйнштейн обратил внимание на главный ингредиент, которого по-прежнему недоставало, — гравитацию. Он работал над этой проблемой несколько лет, прежде чем до него дошло, что ключ к ней лежит в геометрии Римана. Он приложил немало усилий, чтобы разобраться в этой области математики (в этом ему помог Марсель Гроссман, математик и друг, ставший также проводником и наставником).