Гауссов муравей сделал бы ту же ошибку, если бы не знал разницы между плоскостью и цилиндром. Метрика у них одинаковая, а топология — разная. Метрика определяет только
В качестве исключения и приятного оксюморона можно привести плоский тор. Тор имеет форму бублика с центральным отверстием, и его просто невозможно назвать плоским в обычном смысле этого слова. Тем не менее существует плоское (нулевой кривизны) многообразие с топологией бублика. Возьмем квадрат — он плоский — и
Такого рода отождествление часто используется в компьютерных играх, когда какой-нибудь инопланетный монстр уносится за границу экрана и тут же появляется с другой стороны. Программисты на своем жаргоне называют это «свернуть»: живо и наглядно, но не стоит воспринимать это буквально как указание к действию. Муравей прекрасно понял бы плоский тор: свертывание вертикальных граней превращает экран в цилиндр. Затем вы повторяете эту процедуру и соединяете концы цилиндра, получая при этом поверхность с топологией тора. Его метрика наследуется от квадрата, то есть поверхность остается плоской. У настоящего бублика другая метрика, поскольку его поверхность встроена в евклидово пространство.
Фокус с плоским тором можно проделать и с релятивистским пространством-временем, если воспользоваться упрощенной двумерной версией теории относительности Минковского. И бесконечная плоскость Минковского, и квадрат на этой плоскости с отождествленными противоположными сторонами представляют собой плоские варианты пространства-времени. Но топологически один из них — это плоскость, а другой — тор. Проделав ту же операцию с кубом, можно получить плоский трехмерный тор той же размерности, что и пространство.
Аналогичные конструкции возможны в эллиптических и гиперболических пространствах. Берется кусок пространства подходящей формы, его края склеиваются попарно — и получается многообразие той же метрики, но другой топологии. Многие из этих многообразий компактны, то есть имеют конечный размер, как сфера или тор. К концу XIX века математики открыли несколько конечных пространств постоянной кривизны. В 1900 году Шварцшильд привлек к их работе внимание космологов, определенно ссылаясь на трехмерный тор. Александр Фридман проделал то же самое для пространств отрицательной кривизны в 1924 году. В отличие от евклидова и гиперболического пространства эллиптическое пространство конечно, но тот же фокус можно проделать и там; получатся пространства постоянной положительной кривизны с разными топологиями. Тем не менее на протяжении 60 лет после 1930 года в астрономических текстах повторялся один и тот же миф о том, что существует всего три разновидности пространства постоянной кривизны — классические неевклидовы геометрии. Поэтому астрономы работали с этим ограниченным набором вариантов пространства-времени и были ошибочно уверены, что иных не существует.
Космологи, охотившиеся на более крупную дичь, обратили свои взоры к началу Вселенной, рассмотрели три классические геометрии постоянной кривизны и определили метрику Большого взрыва, рассказ о которой мы продолжим в следующей главе. Это стало таким откровением, что на долгое время форма пространства перестала представлять насущный вопрос. Все «знали», что это сфера, потому что такова простейшая метрика для Большого взрыва. Однако в пользу такой формы почти нет наблюдательных данных.
Древние цивилизации считали Землю плоской, и, хотя они ошибались, у них были данные в пользу такой гипотезы: на взгляд человека, Земля действительно выглядела плоской. Если сегодня говорить о Вселенной, то мы знаем даже меньше, чем они знали о Земле. Но в воздухе носятся идеи, способные в принципе ослабить наше невежество.
Если не сфера, то что?