Читаем Математика. Поиск истины. полностью

Развивая идею де Бройля о том, что всем микрочастицам и, в частности, электронам соответствуют волны, Эрвин Шрёдингер (1887-1961) вывел в 1926 г. дифференциальное уравнение с частными производными для так называемой ψ-функции, описывающей форму этих волн. Решая уравнение Шрёдингера, мы находим параметры волн. Его решения называются собственными, или характеристическими, функциями. Если коэффициентам, входящим в уравнение Шрёдингера, придать конкретные численные значения, то эти функции отличны от тождественного нуля только при определенных значениях некоторой постоянной. Эти значения называются собственными, или характеристическими. Дискретные значения энергии электронов в атоме оказываются собственными значениями волнового уравнения Шрёдингера и согласуются с теми величинами, которые дает теория Бора.

Следующая весьма грубая картина позволит нам хотя бы в общих чертах понять, как ведут себя волны электронов в представлении Шрёдингера. На рис. 38 показана часть волны протяженностью 2λ.

Если такую волну создать, проведя смычком по скрипичной струне, то она будет колебаться вверх-вниз, занимая положения, показанные сплошной и штриховой кривыми. Можно возбудить и некую последовательность волн, длины которых составляют лишь дробные части основной длины волны (например, половину и треть ее). В представлении Шрёдингера полная волна, соответствующая любому электрону, окружая ядро, может простираться на две, три и даже пять основных длин волн. В каждом случае в полной волне электрона укладывается целое число основных волн и конец последней волны совпадает с началом первой (на рис. 38 точка B должна совпадать с  точкой A
)

Рис. 38. 

Введенная Шрёдингером ψ-

функция задает амплитуду волн материи, изменяющихся от точки к точке и от одного момента времени к другому. Это стоячие волны, сосредоточенные преимущественно в небольшой области пространства вблизи ядра. По мере увеличения расстояния от ядра волны постепенно затухают, но амплитуда их остается отличной от нуля в области, размеры которой совпадают с экспериментально установленными размерами соответствующего атома. Например, для атома водорода, находящегося в основном (самом нижнем) энергетическом состоянии, амплитуда волн заметно отлична от нуля только в пределах сферы диаметром около 10−8 см. Для любого атома решение волнового уравнения Шрёдингера позволяет получить дискретный набор волн атомных электронов, и с каждым состоянием атома оно связывает определенное значение энергии.

Подчеркнем еще раз, что волна Шрёдингера, описывающая электрон в атоме, представляет не простую волну с одной-единственной частотой, а состоит из целого набора волн с различными частотами. В этом отношении волна Шрёдингера аналогична сложным звуковым волнам, создаваемым музыкальными инструментами.

В связи с волнами де Бройля — Шрёдингера естественно напрашивается вопрос: из чего они «сделаны», или, иначе говоря, из чего они состоят? Подобный вопрос вставал перед физиками и в XIX в., когда было открыто световое и другие виды электромагнитного излучения. Сначала физики полагали, что электромагнитные волны представляют собой колебания таинственной субстанции, называемой эфиром, и придумывали различные механические модели, объясняющие действие эфира. Но со временем физики поняли несостоятельность такого рода идей и стали считать электромагнитные волны самостоятельными сущностями. Нечто похожее произошло и с волнами электронов. Первоначально Шрёдингер предположил, что эти волны действительно описывают распределение заряда электрона, т.е. что в атоме заряд и плотность электрона физически распределены в той области пространства, где амплитуда волны отлична от нуля. Но ничего подобного не наблюдалось. Наоборот, после открытия электрона выяснилось, что весь его заряд сосредоточен в небольшой области пространства и что электрон имеет корпускулярную природу.

Строго говоря, когда мы рассуждаем о возможных видах волн, соответствующих различным энергетическим состояниям электрона, то имеем в виду один электрон, не испытывающий воздействия других частиц. Если же в атоме много электронов, то они утрачивают свою «индивидуальность» и соответствующие им волны сливаются в общую волну, «одну на все электроны».

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука