Читаем Математика. Поиск истины. полностью

В представлении Шрёдингера электроны подобны облакам с переменной плотностью. Они трехмерны. Электронные облака образуют несколько «ярусов» вокруг ядра. Плотность каждого облака возрастает от нуля до максимума и снова убывает до нуля. Электронные облака простираются и за пределы атома, но для каждого электрона их плотность максимальна на таком расстоянии от ядра, которое предсказывается теорией Бора. Электронное облако как интерпретация абстрактного математического понятия с неизбежностью неточно. Представить себе наглядно без ущерба для точности ψ-функцию Шрёдингера невозможно. Нахождение аналитических решений уравнения Шрёдингера — задача настолько трудная, что решить ее удается лишь в отдельных исключительных случаях. Тем не менее полученные решения превосходно согласуются с экспериментальными данными, а другие решения, хотя и приближенные, также достаточно хорошо соответствуют результатам экспериментов. В частности, удалось полностью решить уравнение Шрёдингера для случая атома водорода. Полученное решение позволяет ответить на любой вопрос, допускающий экспериментальную проверку.

То, что электроны при определенных условиях ведут себя как волны, было продемонстрировано в 1927 г. знаменитым экспериментом Клинтона Дж. Дэвиссона (1881-1958) и Лестера Джермера (1896-1971) и независимо Джорджем П. Томсоном (1892-1975). Все эти исследователи обнаружили дифракцию электронов (в качестве дифракционной решетки использовался кристалл) Дифракция как явление, состоит в том, что волны огибают встречающееся на пути препятствие и заходят за него в область «тени». Нечто подобное мы наблюдаем, когда волны на воде огибают корпус судна. Опыты Дэвиссона и Джермера, а также Томсона показали, что в некоторых случаях частицы ведут себя как волны. Физики окончательно убедились в том, что всем субатомным частицам соответствуют свои волны, длины которых определяются формулой де Бройля. Так, работы де Бройля и Шрёдингера выдвинули на передний план понятие корпускулярно-волнового дуализма (волна — частица), доставившее немало хлопот и физикам, и философам.

Несмотря на экспериментальное подтверждение того, что электроны при определенных условиях ведут себя как волны, далеко не все физики смирились с представлением об электронах, «размазанных» вокруг атомного ядра. Некоторые усматривали, в частности, противоречие в следующем: с одной стороны, в любой физически бесконечно малой области плотность заряда электрода должна быть бесконечно мала, а с другой — электрический заряд электрона является величиной вполне определенной. Все электрические заряды кратны заряду электрона. Руководствуясь этими соображениями и пытаясь избежать корпускулярно-волнового дуализма, Макс Борн (1882-1970) в 1926 г. предложил совершенно иную интерпретацию теории Шрёдингера: ввел ее вероятностную интерпретацию.

Теория вероятностей вошла в математику благодаря случаю, а именно в связи с задачами об азартных играх. Но в конце XIX в. Максвелл и Людвиг Больцман (1844-1906), воспользовавшись в своих исследованиях вероятностными соображениями, пришли к законам, описывающим движение газов, — к кинетической теории газов. Одна из знаменитых работ, опубликованных Эйнштейном в 1905 г., также была посвящена вероятностной задаче о так называемом броуновском движении. Вместо того чтобы рассматривать электрон как распределенный в некоем пространственном облаке, плотность которого меняется от точки к точке, Борн интерпретировал плотность как вероятность обнаружить электрон как частицу в той или иной точке пространства.

Обращаясь к ψ-функции, входящей в дифференциальное уравнение Шрёдингера, Борн предложил трактовать величину ψ

как вероятность того, что частица находится в данном элементе пространства в данный момент времени. Следовательно, местонахождение электронов как частиц может быть указано лишь с большей или меньшей вероятностью. Например, если в некоторой области пространства |ψ|2 = 0,8, то вероятность обнаружить частицу (электрон) в ней составляет 80 шансов из 100. Вероятностная интерпретация Борна общепринята и поныне.

Такой подход позволяет точно оценивать, с какой вероятностью электрон может находиться в любом данном объеме. При подобной интерпретации электрон локализован, а не «размазан», как в волновой механике Шрёдингера. Тем не менее остается вопрос, является ли вероятностная интерпретация наилучшей из возможных или же она просто порождена неполнотой наших представлений об электроне.

Использование вероятности может показаться отчаянной попыткой спасти положение, но статистическая механика убедительно доказала ценность вероятностного подхода. Любой газ представляет собой совокупность множества хаотически движущихся молекул, однако давление газа и другие его свойства удается вычислять на основе наиболее вероятных значений, и эти параметры имеют физический смысл.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука