Читаем Математика. Поиск истины. полностью

В книге IX Птолемей излагал свое высшее и единственное в своем роде достижение — первое в истории человечества полное и строгое описание причудливых и запутанных движений планет. Исходным пунктом всех его построений была неоспоримая первая аксиома небесной геометрии, которую он сформулировал еще раз:

Перед нами стоит задача доказать, что, как в случае пяти планет, посредством равномерных круговых движений (свободных от каких бы то ни было несоразмерностей и беспорядков).

Трудно указать в истории науки еще какой-нибудь априорный принцип, который бы — властвовал над умами людей столь прочно и продолжительно.

В первом приближении Птолемей полагает, что движения всех планет происходят в плоскости эклиптики, т.е. к плоскости круговой орбиты Солнца, которое Птолемей изображает медленно вращающимся, что порождает предварение равноденствий. Однако простая схема, состоящая из эпицикла, центр которого движется по деференту, оказывается недостаточной для описания движения планет, ибо из нее вопреки наблюдениям следует, что дуги, проходимые в попятном движении, равны по длине и расположены равномерно. Птолемей устраняет эту излишнюю симметрию, постулируя эпицикл, центр которого движется по эксцентрику.

В рамках фундаментальной схемы система эксцентрик-эпицикл может быть сохранена, только если постулировать, как показал Птолемей, что эпицикл каждой планеты движется равномерно не относительно центра деферента C,

а относительно другой точки Q, получившей название экванта (рис. 21).

Рис. 21.

Земля находится в точке E, и EC = CQ. Планета движется по эпициклу в том же направлении, в каком центр эпицикла движется по деференту (в отличие от моделей движения Солнца и Луны, где движение по эпициклу происходит в направлении, противоположном тому, в котором центр эпицикла движется по деференту). Попятные движения происходят тогда, когда планета находится в части эпицикла, ближайшей к Земле. Только в случае Меркурия кинематическую схему пришлось усложнить по аналогии со схемой, предложенной Птолемеем для Луны: центр деферента Меркурия сам описывает небольшую окружность, вследствие чего небольшой по своим размерам эпицикл планеты периодически приближается к Земле и удаляется от нее. Каждая из внутренних планет (Меркурий и Венера) описывает эпицикл за один планетный «год». Центр эпицикла совершает один оборот по деференту за один земной год. У внешних планет время распределено наоборот: период, за который центр эпицикла проходит эксцентрик, равен тому, что сейчас мы называем периодом обращения планеты вокруг Солнца, а один оборот по эпициклу происходит за время, соответствующее, по нашим представлениям, периоду обращения Земли вокруг Солнца. Каждый эпицикл наклонен по отношению к своему деференту так, чтобы плоскость эпицикла была параллельна эклиптике.

«Да не сочтет никто при виде трудности наших построений сложными сами гипотезы», — взывал Птолемей, хотя читатель, у которого голова шла кругом от нагромождения эпициклов и деферентов, скорее всего склонен был думать иначе. Однако прогресс науки отнюдь не гарантирует, что в природе все устроено просто.

С нашей точки зрения эквант — мастерский штрих Птолемея, оригинальная и весьма удачная схема, своего рода предтеча кеплеровских эллипсов. Однако некоторые астрономы последующих поколений; критически оценивая наследие Птолемея, усматривали во введении экванта некий компромисс — попытку увязать наблюдаемые явления со «священным первым принципом» небесных движений, требовавшим равномерности движения только относительно центра окружности. Эквант был в глазах некоторых астрономов тем самым неслыханным нарушением традиций, которое позволило Копернику, «двинуть Землю».

В дополнение к блестящим кинематическим схемам движений Луны, Солнца и планет Птолемей расположил все светила в порядке их удаленности от Земли (правда, здесь не обошлось без ошибок) и привел оценки размеров небесных тел, хотя и сознавал, что они грубы, поскольку в те времена не было хороших астрономических инструментов.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика