Читаем Математика. Поиск истины. полностью

Гиппарх сознавал, что схема Евдокса, в которой небесные тела прикреплены к сферам, вращающимся вокруг общего центра — центра Земли, не позволяет истолковать результаты многих его собственных наблюдений и наблюдений других греческих астрономов. Вместо гомоцентрических сфер Евдокса Гиппарх предположил, что планета P (рис. 20) движется с постоянной скоростью по окружности (эпициклу), центр которой Q перемещается с постоянной скоростью по другой окружности, в центре которой находится Земля. Подбирая радиусы двух окружностей и скорости точек P и Q,

Гиппарху удалось дать точное описание движения многих планет. Движение планет в схеме, предложенной Гиппархом, напоминает движение Луны, каким его описывает современная астрономия. Луна обращается вокруг Земли, в то время как Земля обращается вокруг Солнца. В результате движение Луны воспроизводит движение планеты вокруг Земли в схеме Гиппарха.

Рис. 20.

При описании движения некоторых небесных тел Гиппарху потребовалось ввести комбинацию из трех или четырех окружностей, движущихся одна по другой. Иными словами, планета P двигалась по окружности с центром в математической точке Q, точка Q

в свою очередь двигалась по окружности с центром в точке R, а точка R описывала окружность, в центре которой лежала Земля, причем и планета P, и точки Q
и R двигались по своим окружностям с постоянными (хотя, вообще говоря, не одинаковыми) скоростями. В некоторых случаях Гиппарху пришлось предположить, что центр самой внутренней окружности (деферента) не совпадает с центром Земли, а находится неподалеку от него. Движение в соответствии с такой геометрической конструкцией получило название эксцентрического, а движение в случае, когда центр деферента совпадал с центром Земли, — эпициклического. Используя движения обоих типов и надлежащим образом подбирая радиусы и скорости перемещения окружностей, Гиппарх сумел достаточно точно описать движения Луны, Солнца и пяти известных тогда планет. Теория Гиппарха позволяла предсказывать лунное затмение с точностью до одного-двух часов (солнечные затмения удавалось предсказывать менее точно).

Мы не можем перечислять здесь все достижения Гиппарха, но об одном его великолепном открытии, оказавшем особое влияние на последующее развитие астрономии, нельзя не упомянуть. Речь идет о явлении, получившем название «предварение равноденствий». Точки равноденствий (весеннего и осеннего), т.е. точки пересечения плоскости небесного экватора (эклиптики) и плоскости орбиты Земли, медленно перемещаются и завершают полный оборот примерно за 26 000 лет. Гиппарх совершил это открытие, когда составлял звездный каталог (один из самых древних), в котором было указано местоположение 850 звезд. Гиппарх также оценил продолжительность солнечного года в 365 сут 5 ч и 55 мин (что примерно на 61

/2 мин больше, чем считается ныне).

Следует упомянуть и о том, что с современной точки зрения Гиппарх сделал шаг назад, так как примерно за столетие до него Аристарх Самосский предложил теорию, согласно которой все планеты обращаются вокруг Солнца. Но, судя по дошедшим до нас сведениям, наблюдения, выполненные за 150 лет обсерваторией в Александрии, и записи более старых наблюдений, произведенных в Вавилоне, убедили Гиппарха в том, что гелиоцентрическая теория, где планеты движутся по круговым орбитам вокруг Солнца, не позволяет с достаточной точностью описать наблюдаемые явления.

Вместо того чтобы воспринять и, возможно, усовершенствовать идею Аристарха Самосского, Гиппарх отринул ее как чисто умозрительную. Другие астрономы отвергали идею Аристарха потому, что им казалось нечестивым отождествлять преходящую, подверженную гибели материю Земли с неизменной, вечной материей небесных тел. Такое отождествление было бы неизбежным, если считать Землю одной из планет. Различие между земным и небесным глубоко укоренилось в мышлении древних греков. Его отстаивал, хотя и не догматически, даже Аристотель.

Во II в. уже новой эры греческая космология достигла наивысшего расцвета. Ее создателем стал Клавдий Птолемей, родившийся на берегах Нила. Биография Птолемея, как и многих других древних героев нашего повествования, почти неизвестна. До нас дошли только сведения о том, что он умер в возрасте 78 лет и что его астрономические наблюдения в Александрии охватывали период 127-151 гг. В свое время Птолемей был известен не только как астроном, но и как географ. Ему принадлежат также сочинения по оптике и астрологии. Непреходящую славу принесло Птолемею его сочинение Matematike Syntaxis, или «Математическое построение». В арабском переводе оно называлось «Аль-мегисте» (великое); отсюда и пошло название «Альмагест», под которым оно вошло в европейскую астрономию, заняв в ней главенствующее положение на четырнадцать столетий.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика