Я считаю несомненным следующее. (1). Малые части пространства по своей природе аналогичны небольшим неровностям иа поверхности, в среднем плоской. (2) Свойство быть искривленным или деформированным непрерывно переходит от одной части пространства к другой наподобие волны. (3) Эта вариация кривизны пространства отражает то, что действительно происходит при явлении, которое мы называем движением материи, эфирной или телесной. (4) В реальном физическом мире не происходит ничего, кроме этих вариаций, вероятно, удовлетворяющих закону непрерывности.
Клиффорд высказал также предположение, что гравитационные эффекты, возможно, обусловлены кривизной пространства, но низкая точность пространственных измерений в то время не позволила подтвердить его догадку. Сколь ни блестящей была гипотеза Клиффорда, ей оставалось дожидаться своего часа — появления работ Эйнштейна по общей теории относительности.
Суть соображений, высказанных Риманом и Клиффордом, станет понятней, если рассмотреть, скажем, естественную геометрию земной поверхности в горной местности. На столь сильно пересеченной местности прямых может не быть. Какая бы кривая ни была здесь кратчайшим путем между двумя точками, она почти всегда отлична от прямой. Кроме того, кратчайшие пути, или геодезические, не обязательно имеют одинаковую форму. Представим себе, что обитателям такой горной местности понадобилось изучить треугольники. Итак, даны три точки и соединяющие их дуги — геодезические. Какими свойствами обладают такие треугольники? Ясно, что их свойства зависят от формы того участка местности, который заключен внутри геодезических, служащих сторонами треугольников. Сумма внутренних углов одних треугольников гораздо больше 180°, сумма углов других — гораздо меньше 180°. Обитатели нашей горной местности, несомненно, пришли бы к неевклидовой геометрии. Такая геометрия обладала бы одной важной отличительной особенностью: она была бы неоднородна. Свойства фигур в такой геометрии изменялись бы от точки к точке, как меняется рельеф горной местности.
Содержание заметок Гаусса, ставшее известным после его смерти (1855), когда научная репутация великого математика была на недосягаемой высоте, и опубликованная в 1868 г. лекция Римана (прочитанная в 1854 г.) убедили некоторых математиков в том, что неевклидова геометрия вполне может отражать геометрию физического пространства и что нельзя более с уверенностью говорить, какая из геометрий правильная.
Постепенно неевклидова геометрия и вытекающее из нее следствие относительно физической истинности этой геометрии были признаны всеми математиками, но отнюдь не потому, что ее применимость была подтверждена какими-либо новыми данными. Настоящую причину признаний такого рода указал в своей «Научной автобиографии» один из основоположников квантовой механики Макс Планк:
Обычно новые научные истины побеждают не так, что их противников убеждают и они признают свою неправоту, а большей частью так, что противники эти постепенно вымирают, а подрастающее поколение усваивает истину сразу.
Мы уже говорили о том, что математики начали задумываться о геометрии физического пространства. Физики-теоретики конца XIX в. все более стали интересоваться другой проблемой. Одним из неявных допущений, глубоко укоренившихся в научном мышлении XVIII-XIX вв., была гипотеза о существовании силы тяготения, или гравитации. Согласно первому закону Ньютона, «всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменять это состояние» ([19], с. 39). Следовательно, если тело отпустить, то в отсутствие тяготения оно оставалось бы висеть в воздухе. Аналогичным образом, не будь гравитации, планеты разлетелись бы по прямым в космическое пространство. Но ничего такого не происходит. Все объекты во Вселенной ведут себя так,