Примерно тех же взглядов придерживался крупнейший математик второй половины XIX — начала XX вв. Феликс Клейн (1849-1925). Хотя Кэли и Клейн сами работали над неевклидовыми геометриями (как мы увидим далее, существуют несколько неевклидовых геометрий), они рассматривали предмет своих исследований как некие новации, возникающие при введении в евклидову геометрию новых искусственных метрик — функций, задающих расстояние между двумя точками. Ни Кэли, ни Клейн не признавали за неевклидовой геометрией той фундаментальности и применимости к реальному миру, какая приписывалась евклидовой геометрии. Впрочем, до создания теории относительности их позиция была вполне объяснима.
Математики, как это ни печально, «отвернулись от бога», и всемогущий геометр не захотел открывать им, какую из геометрий он избрал за основу при сотворении мира. При выяснении этого вопроса математикам пришлось полагаться только на собственные силы. Существование нескольких альтернативных геометрий само по себе явилось для математиков сильнейшим потрясением, но еще большее недоумение охватило их, когда они осознали, что невозможно с абсолютной уверенностью отрицать применимость неевклидовой геометрии к физическому пространству.
Проблема выбора геометрии, наиболее соответствующей реальному физическому пространству, первоначально поставленная в работах Гаусса, способствовала рождению еще одного творения человеческой мысли, убедившего математический мир, что геометрия физического пространства может быть неевклидовой. Автором новых идей был Георг Бернхард Риман (1826-1866), ученик Гаусса, ставший впоследствии профессором Гёттингенского университета. Хотя работы Лобачевского и Бойаи не были известны Риману в деталях, о них был великолепно осведомлен Гаусс, и Риман, несомненно, знал о сомнениях Гаусса относительно того, в какой мере истинна и насколько применима к физическому пространству евклидова геометрия.
Гаусс проложил дорогу поразительным идеям Римана, высказав еще одну революционную мысль. Обычно мы изучаем геометрию на поверхности сферы, считая последнюю частью трехмерного евклидова пространства и тем самым заранее исключая любые радикально новые идеи. Но предположим, что мы рассматриваем поверхность сферы как пространство само по себе и строим геометрию такого пространства. Прямоугольные координаты здесь не очень подходят, так как для их построения необходимы прямые, которые отсутствуют на сфере. В качестве координат какой-либо точки на сфере можно было бы взять, например, широту и долготу. Еще одна проблема возникает при попытке определить кратчайшие пути из одной точки в другую. Наш повседневный опыт, интерпретированный всеведущими математиками, подсказывает, что кратчайшими путями на поверхности сферы являются дуги больших кругов (например, меридианы), т.е. кругов, центр которых совпадает с центром Земли. Эти дуги и есть «прямые» в сферической геометрии. Продолжая изучать геометрию поверхности сферы, мы обнаружили бы немало странных теорем. Например, сумма углов треугольника, образованного дугами больших кругов, т.е. отрезками «прямых» сферической геометрии, больше 180°.
В своей знаменитой работе, опубликованной в 1827 г., Гаусс исподволь проводил следующую мысль: если мы изучаем поверхности как независимые пространства, то соответствующие этим пространствам двумерные геометрии могут оказаться весьма причудливыми в зависимости от формы поверхностей. Например, эллипсоидальная поверхность, имеющая форму мяча для регби, имеет иную геометрию, нежели сферическая поверхность.
А как обстоит дело на сфере с «параллельными»? Поскольку любые два больших круга пересекаются не один раз, а дважды, в сферической геометрии нам не обойтись без аксиомы, гласящей, что любые две «прямые» пересекаются в двух точках. Совершенно ясно, что геометрия поверхности сферы будет неевклидовой; впоследствии она получила название
Идеи Гаусса были хорошо знакомы Риману. Гаусс предложил Риману несколько тем для публичной лекции, с которой тому предстояло выступить для получения звания приват-доцента, дававшего право на преподавание в Гёттингенском университете. Риман остановил свой выбор на основаниях геометрии и в 1854 г. в присутствии Гаусса прочел свою лекцию на философском факультете. Лекция Римана была опубликована в 1868 г. под названием «О гипотезах, лежащих в основании геометрии».