Читаем Математика. Утрата определенности. полностью

Однако к 1831 г. Гаусс — если у него еще оставались какие-то сомнения относительно того, принимает ли он сам и другие математики комплексные числа, — преодолел эти сомнения и опубликовал работы по геометрическому представлению комплексных чисел. В работах, вышедших из-под пера Гаусса в тот год, все было сформулировано в явном виде. Гаусс не только предложил представлять число a + bi

точкой на комплексной плоскости, но и дал геометрическое толкование сложения и умножения комплексных чисел (гл. IV). Он отметил, что к тому времени уже сложилось достаточно четкое понимание дробей, а также отрицательных и вещественных чисел. К комплексным же числам, несмотря на всю их значимость, отношение было в лучшем случае терпимым. Многие математики считали комплексные числа не более чем игрой с символами. Но «здесь [в геометрическом представлении] доказательство интуитивного понимания числа √−1 полностью обосновано и не нуждается более в необходимости относить указанные величины в область объектов, изучаемых арифметикой». Из этого высказывания видно, что сам Гаусс был согласен с интуитивным пониманием мнимых чисел. Гаусс утверждал также, что если бы величины 1, −1 и √−1 назывались соответственно не положительной, отрицательной и мнимой единицей, а прямой, обратной и побочной, то у людей не создавалось бы впечатления, что с этими числами связана какая-то мрачная тайна. По словам Гаусса, геометрическое представление дает истинную метафизику мнимых чисел в новом свете. Именно Гаусс ввел термин «комплексные числа» (в противоположность «мнимым числам» Декарта) и использовал для обозначения √−1 символ i.
Однако Гаусс не обмолвился ни словом относительно того, что и он сам, и его современники свободно использовали вещественные числа, не имея никакого их обоснования, хотя этот момент был не менее важен.

В работе от 1840 г., о которой в дальнейшем мы расскажем несколько подробнее, Гаусс использовал комплексные числа более свободно, отметив, что «теперь их знают все». Но Гаусс заблуждался. Еще долго после того, как была создана (главным образом трудами Коши в первой трети XIX в.) теория комплекснозначных функций комплексного переменного, нашедшая применение в гидродинамике, профессора Кембриджского университета испытывали непреодолимое отвращение к «сомнительной» величине √−1 и с помощью громоздких построений стремились изгнать ее отовсюду, где она только появлялась.

В первой половине XIX в. логические основания алгебры характеризовались попросту их полным отсутствием. Основная проблема состояла в том, что вместо всех типов чисел в алгебре использовались буквы и все действия над этими буквами производились так, как если бы они обладали хорошо известными и интуитивно приемлемыми свойствами положительных целых чисел, такими, как коммутативность сложения (a + b = b + a

) или ассоциативность умножения [(ab)c = a(bc)]. Полученные с использованием этих свойств результаты оставались верными при подстановке вместо букв любых чисел: отрицательных, иррациональных или комплексных. Но поскольку природа этих чисел оставалась непонятой, а их свойства не были логически обоснованы, такое использование буквенных символов вызывало справедливые нарекания. Создавалось впечатление, что алгебра буквенных выражений обладала своей собственной логикой, которая и была причиной непостижимой эффективности и правильности алгебры. Так в 30-х годах XIX в. математики столкнулись с проблемой обоснования операций, производимых над буквенными, или символическими, выражениями.

Перейти на страницу:

Похожие книги