Читаем Математика. Утрата определенности. полностью

В статье, послужившей как бы приложением к сочинению барона Мазера (1800), о котором мы уже упоминали в гл. V, Френд подверг критике общее правило, согласно которому число корней уравнения равно его степени. Френд утверждал, что оно верно лишь для некоторых уравнений, и, разумеется, в качестве примера приводил уравнения, все корни которых положительны. О математиках, приемлющих названное общее правило, Френд говорил, что «они, дабы скрыть ложность принимаемого ими общего утверждения или придать ему хотя бы на словах видимость истины, оказываются вынужденными дать особые названия тому скопищу величин, которые им хотелось бы выдать за корни уравнения, хотя те таковыми не являются».

Знаменитый французский геометр Лазар Никола Карно (1753-1823) известен не только своими оригинальными работами, но и как автор обстоятельного методологического сочинения «Размышления о метафизике исчисления бесконечно малых» (1797, 2-е (переработанное) изд. — 1813), переведенного на многие языки [45]. Карно прямо утверждал: нелепо думать, будто что-то может быть меньше, чем ничто. Отрицательные числа, по мнению Карно, можно вводить в алгебру как некие фиктивные величины, облегчающие вычисления, но, разумеется, это не настоящие величины, и они могут приводить к неверным заключениям.

Начавшийся в XVIII в. спор о логарифмах отрицательных и комплексных чисел совершенно лишил математиков душевного покоя, так что даже в XIX в. они испытывали настоятельную потребность усомниться в существовании как отрицательных, так и комплексных чисел. Роберт Вудхаус из Кембриджского университета опубликовал статью «О непременной истинности некоторых заключений, получаемых с помощью мнимых величин», где, в частности, утверждалось: «Парадоксы и противоречия, в которых обвиняют друг друга математики, вовлеченные в спор относительно логарифмов отрицательных и мнимых величин, можно использовать как веские аргументы против использования этих величин в исследованиях».

Коши — несомненно, один из величайших математиков первой половины XIX в. и создатель теории функций комплексного переменного — как это ни парадоксально, в первые десятилетия XIX в. сам отказывался считать числами такие выражения, как a + b√−1. В своем знаменитом «Курсе анализа» (Cours d'analyse,

1821) он назвал подобные выражения «количествами, лишенными всякого смысла». Тем не менее, продолжал он, эти «бессмысленные количества» позволяют высказывать некие утверждения относительно (реально существующих) вещественных чисел a и b; так, например, равенство

a + b√−1 = c

+ d√−1

указывает, что a = c и b = d. По утверждению Коши, «каждое равенство, связывающее мнимые числа, есть не более как символическая запись двух равенств вещественных чисел». Даже в 1847 г. он выдвинул весьма сложную теорию, призванную обосновать операции над комплексными числами без использования при этом величины √−1, от которой, говорил Коши, «мы можем полностью отречься и которую должны оставить без сожаления, поскольку нам не известно, ни что означает этот символ, ни какой смысл надлежит ему приписывать».

В 1831 г. Огастес де Морган, автор знаменитых «законов де Моргана» математической логики, внесший немалый вклад в развитие алгебры, высказал свои возражения против отрицательных и комплексных чисел в книге «Об изучении и трудностях математики», в которой, по его словам, не содержалось ничего, что нельзя было бы найти в лучших учебниках, используемых в те времена студентами Оксфорда и Кембриджа:

Мнимое выражение √−a

и отрицательное выражение −b сходны в том, что каждое из них, встречаясь как решение задачи, свидетельствует о некоторой противоречивости или абсурдности. Что же касается реального смысла, то оба выражения надлежит считать одинаково мнимыми, так как 0 − a столь же непостижимо, как и √−a.

В качестве примера де Морган приводит следующую задачу: отцу — 56 лет, а сыну — 29; через сколько лет отец будет вдвое старше сына? Де Морган составляет уравнение 56 + x = 2(29 + x) и, решая его, получает x = −2.

Такой ответ он считает абсурдным, но замечает, что если x заменить на, −x, то данное уравнение перейдет в 56 − x = 2(29 − x), откуда следует, что x = 2. Отсюда де Морган делает вывод, что исходная задача была неверно поставлена: отрицательный ответ указывает на ошибку в первоначальной формулировке задачи, где на самом деле следует спрашивать: «Сколькими годами ранее отец был вдвое старше сына?»

По поводу комплексных чисел де Морган замечает:

Перейти на страницу:

Похожие книги